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Fig. 1. DQNViz: (a) the Statistics view presents the overall training statistics with line charts and stacked area charts; (b) the Epoch
view shows epoch-level statistics with pie charts and stacked bar charts; (c) the Trajectory view reveals the movement and reward
patterns of the DQN agent in different episodes; (d) the Segment view reveals what the agent really sees from a selected segment.

Abstract— Deep Q-Network (DQN), as one type of deep reinforcement learning model, targets to train an intelligent agent that
acquires optimal actions while interacting with an environment. The model is well known for its ability to surpass professional human
players across many Atari 2600 games. Despite the superhuman performance, in-depth understanding of the model and interpreting
the sophisticated behaviors of the DQN agent remain to be challenging tasks, due to the long-time model training process and the
large number of experiences dynamically generated by the agent. In this work, we propose DQNViz, a visual analytics system to
expose details of the blind training process in four levels, and enable users to dive into the large experience space of the agent for
comprehensive analysis. As an initial attempt in visualizing DQN models, our work focuses more on Atari games with a simple action
space, most notably the Breakout game. From our visual analytics of the agent’s experiences, we extract useful action/reward patterns
that help to interpret the model and control the training. Through multiple case studies conducted together with deep learning experts,
we demonstrate that DQNViz can effectively help domain experts to understand, diagnose, and potentially improve DQN models.

Index Terms—Deep Q-Network (DQN), reinforcement learning, model interpretation, visual analytics.

1 INTRODUCTION

Recently, a reinforcement learning (RL) agent trained by Google Deep-
Mind [32, 33] was able to play different Atari 2600 games [8] and
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achieved superhuman level performance. More surprisingly, the su-
perhuman level performance was achieved by taking only the game
screens and game rewards as input, which makes a big step towards
artificial general intelligence [14]. The model that empowers the RL
agent with such capabilities is named Deep Q-Network (DQN [33]),
which is a deep convolutional neural network. Taking the Breakout
game as an example (Figure 2, left), the goal of the agent is to get the
maximum reward by firing the ball to hit the bricks, and catching the
ball with the paddle to avoid life loss. This is a typical RL problem
(Figure 2, right), which trains an agent to interact with an environment
(the game) and strives to achieve the maximum reward by following
certain strategies. Through iterative trainings, the agent becomes more
intelligent to interact with the environment to achieve high rewards.
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Fig. 2. The Breakout game and the reinforcement learning problem.

Despite the promising results, training DQN models usually requires
in-depth know-how knowledge due to the following reasons. First,
different from supervised/unsupervised learnings that learn from a
predefined set of data instances, reinforcement learnings learn from
the agent’s experiences, which are dynamically generated over time.
This requires dynamic summarizations of the experiences to achieve
a good understanding of the training data. Second, interpreting the
behavior of a DQN agent is also challenging. For example, when the
agent moves the paddle left, what does the agent really see? Is this
an intentional move or it is just a random choice? These questions
are important to understand the agent, but cannot be directly answered
by model statistics captured from conventional approaches. Finally,
DQN models take a certain amount of random inputs during training
(e.g., randomly moving the paddle in the Breakout game). The random
inputs give the agent more flexibilities to explore the unknown part of
the environment, but also prevent the agent from fully exploiting its
intelligence. Therefore, a proper random rate is crucial to the training.

In recent years, we have witnessed the success of many visual analyt-
ics approaches to understand deep neural networks. These approaches
cover supervised (e.g. CNNVis [27]) and unsupervised (e.g. GAN-
Viz [50]) deep learning models and are able to expose the models with
multiple levels of details. However, to date, few visual analytics works
have been reported for deep RL models. Additionally, visualization has
played an increasingly important role in model diagnosis and improve-
ment. For example, Liu et al. [26] showed how visualization can help
in diagnosing training failures of deep generative models by disclosing
how different neurons interact with each other. Through visualization,
Bilal et al. [10] demonstrated the effects of the class hierarchy in convo-
lutional neural networks and they successfully improved the models by
considering the hierarchy. We believe similar attempts of diagnosing
and improving models are also promising for deep RL models.

In this work, we propose DQNViz, a visual analytics system to un-
derstand, diagnose, and potentially improve DQN models. DQNViz
helps domain experts understand the experiences of a DQN agent at
four different levels through visualization. The agent’s experiences are
not only the inputs for next training stages, but also the outputs from
previous training stages. Therefore, they decide what the agent will
learn next, and also reflect what the agent has learned previously. By
thoroughly studying those experiences with domain experts using DQN-
Viz, we have identified several typical action and reward patterns, which
are very useful in understanding the behavior of the agent, evaluating
the quality of the model, and improving the performance of the training.
For the challenge of understanding the agent’s mind when performing
an action, we dive into the structure of DQN and use guided back-
propagations [46] to expose the features that different convolutional
filters extracted. To sum up, the contributions of this work include:
• We present a visual analytics system, DQNViz, which helps to un-

derstand DQN models by revealing the models’ details in four levels:
overall training level, epoch level, episode level, and segment level.

• We propose a visual design for event sequence data generated from
DQN models. The design can effectively reveal the movement pat-
terns of an agent, and synchronize multiple types of event sequences.

• Through comprehensive studies with domain experts using DQNViz,
we propose an improvement in controlling random actions in
DQN models, which is directly resulted from our visual analytics.

2 RELATED WORK

DQN Model and Model Challenges. Reinforcement learning (RL)
aims to generate an autonomous agent interacting with an environment
to learn optimal actions through trial-and-error. Researchers have de-
veloped three main approaches to address RL problems: value function

based approaches [5,52], policy based approaches [23], and actor-critic
approaches [24]. Different approaches have their respective merits and
frailties, which have been thoroughly discussed in [4, 5]. Our work
focuses on DQN [32,33], a value function based approach, to present an
initial effort in probing RL problems with a visual analytics approach.
DQN learns a Q-value function [5,52] for a given state-action pair with
deep neural networks to handle the large number of input states (e.g.,
playing Atari games). We explain it with details in Section 3.

Recently, there are several important extensions of DQN models.
Wang et al. [51] proposed dueling networks to learn a value function
for states and an advantage function associated with the states, and
combined them to estimate the value function for an action. Double
DQN [17] tackles the over-estimation problem by using double esti-
mators. Another important extension is the prioritized experience re-
play [41] that samples important experiences more frequently. Other ex-
tensions to reduce variability and instability are also proposed [3,19,20].

Despite these advances, there are several challenges to understand
and improve DQNs. The first one is to understand the long-time training
process. A DQN infers the optimal policy by enormous trial-and-error
interactions with the environment, and it usually takes days/weeks to
train the model [12]. It is not easy to effectively track and assess the
training progress, and have intervention at the early stages. Secondly,
it is not clear what strategies an agent learns and how the agent picks
them up. The agent generates a huge space of actions and states with
strong temporal correlations during the learning. It is helpful yet chal-
lenging to extract the dominant action-state patterns and understand
how the patterns impact the training. Thirdly, it is a non-trivial task to
incorporate domain experts’ feedback into the training. For example,
if experts observe some good/bad strategies an agent learned, they do
not have a tool to directly apply such findings to the training. Finally,
similar to other deep learning models, it needs numerous experiments
to understand and tune the hyper-parameters of DQNs. One example is
to understand the trade-off between explorations and exploitations [13],
which is controlled by the exploration rate [35]. In this work, we try to
shed some light on these challenges through a visual analytics attempt.

Deep Neural Networks (DNN) Visualization. The visualization
community has witnessed a wide variety of visual analytics works for
DNN in recent years [11, 28]. According to the taxonomy in machine
learning [39], those works can generally be categorized into works for
supervised and unsupervised DNN. Example visualization works for
supervised DNN include: CNNVis [27], RNNVis [31], LSTMVis [47],
ActiVis [22], Blocks [10], DeepEyes [37], etc. For unsupervised DNN,
DGMTracker [26] and GANViz [50] are typical examples.

One part missing from the above taxonomy [39] is the reinforcement
learning [5], and few visual analytics works have been reported for
this part. Specifically, for DQN, the visualization is limited to using
t-SNE [30] to lay out activations from the last hidden layer of the model,
as presented in the original DQN paper [33]. Although the result is
effective in providing a structured overview of the large amount of input
states, it is not interactive and only limited information is presented. The
effectiveness of this preliminary visualization has also demonstrated
the strong need of a comprehensive visual analytics solution.

Event Sequence Data Visualization. To explore the action space
over time for reinforcement learnings, a time-oriented sequence vi-
sualization is of our interest. A large number of event sequence data
visualization works can be found from literature [42], and here we focus
on two categories: flow-based and matrix-based approaches according
to [16]. The flow-based approaches use a time-line metaphor to list a
sequence of events and extend them along one dimension (e.g. time).
Multiple sequences usually share the same extending dimension and
thus can be synchronized accordingly. Example visualization works
in this group include: LifeLines [38], LifeFlow [53], CloudLines [25],
EventFlow [34], DecisionFlow [15], etc. The matrix-based approaches,
such as MatrixFlow [36] and MatrixWave [55], can effectively aggre-
gate events and present them with compact matrices to avoid visual
clutters. The combination of both types of approaches has also been pro-
posed recently, e.g., EgoLines [54], EventThread [16]. We also focus
on event sequence data in this paper, and our objective is to visualize
multiple types of event sequences and enable users to synchronize and



analyze them simultaneously. On the one hand, we use multiple types
of statistical charts to quantitatively summarize the event sequences.
On the other hand, we propose a new visual design that can qualitatively
reflect the behavior patterns of a DQN agent and synchronize different
types of event sequences on-demand.

3 BACKGROUND ON DEEP Q-NETWORKS (DQN)
DQN [32, 33], as one type of reinforcement learning, aims to train
an intelligent agent that can interact with an environment to achieve
a desired goal. Taking the Breakout game as an example (Figure 2,
left), the environment is the game itself, and it responds to any action
(e.g. moving left) from an agent (the trained player) by returning the
state of the game (e.g. paddle position) and rewards. With the updated
state and achieved reward, the agent makes a decision and takes a new
action for next step. This iterative interaction between the agent and
environment (Figure 2, right) continues until the environment returns a
terminal state (i.e. game-over), and the process generates a sequence
of states, actions, and rewards, denoted as: s0,a0,r1,s1,a1,r2, ...,rn,sn.
The desired goal is maximizing the total reward achieved by the agent.

How to maximize the total reward? The total reward for one game
episode (i.e., from game-start to game-over) is: R=r1 + r2 + ...+ rn.
Suppose we are at time t, to achieve the maximum total reward, the
agent needs to carefully choose actions onwards to maximize its future
rewards: Rt=rt + rt+1 + ...+ rn. To accommodate the uncertainty
introduced by the stochastic environment, a discount factor, γ ∈ [0,1],
is usually used to penalize future rewards. Therefore, Rt=rt + γrt+1 +
γ2rt+2...+ γn−trn=rt + γRt+1, i.e., the maximum reward from time t
onwards equals the reward achieved at t plus the maximum discounted
future reward. Q-learning [52] defines the maximum future reward as a
function of the current state and the action taken in the state, i.e.,

Q(s,a)=r+γmax
a′

Q(s′,a′), and s′/a′ is the state/action after s/a. (1)

This equation is well known as the Bellman equation [9]. The problem
of maximizing the total reward is to solve this equation now, which can
be conducted through traditional dynamic programming algorithms.

Why DQN is needed? One problem in solving the Bellman equa-
tion is the algorithm complexity, especially when the number of states
is large. In Breakout, the states should reflect the position, direction,
speed of the ball and the paddle, the remaining bricks, etc. To capture
such information, RL experts use four consecutive game screens as one
state, which contains both static (e.g. paddle position) and dynamic (e.g.
ball trajectory) information. As a result, each state has 84×84×4 di-
mensions (each screen is a gray scale image of resolution 84×84), and
the total number of states is 25684×84×4. Solving the Bellman equation
with input in this scale is intractable. DQN, which approximates Q(s,a)
through a deep neural network, emerges to be a promising solution.

How does DQN work? The core component of DQN is a Q-network
that takes screen states as input and outputs the q-value (expected
reward) for individual actions. One popular implementation of the Q-
network is using a deep convolutional neural network (explained later
in Figure 7, left), which shows strong capabilities for image inputs [44].
The DQN framework consists of 4 major stages (Figure 3, left):
• The Predict stage (conducted by the Q-network with its current

parameters θi) takes the latest state (4 screens) as input and outputs
the predicted reward for individual actions. The action with the
maximum reward, i.e., argmax

a
Q(s,a;θi), is the predicted action; and the

maximum reward is the predicted q(uality) value, i.e., q=max
a

Q(s,a;θi).

• The Act stage is handled by the environment (an Atari game emulator,
we used ALE [8] in this work). It takes the predicted action as input
and outputs the next game screen, the resulted reward, and whether
the game terminates or not. The new screen will be pushed into the
State Buffer (a circular queue storing the latest four screens) and
constitute a new state with the three previous screens, which is the
input for the next Predict stage.

• The Observe stage updates the Experience Replay memory (ER, a
circular queue with a large number of experiences) by pushing a
new tuple (of the predicted action, the reward of the action, the new
screen, and the terminal value) as an experience into the ER.

• The Learn stage updates the Q-network by minimizing the following
loss at iteration i [33], i.e., the mean square error between q and qt :

Li(θi) = E(s,a,r,s′)∼ER

[(
r+γmax

a′
Q(s′,a′;θ

−
i )−Q(s,a;θi)

)2]
(2)

where (s,a,r,s′) are random samples from the ER and θ
−
i are the

parameters of the Q-network used to generate the target q at iteration
i, i.e., qt=r+γmax

a′
Q(s′,a′;θ

−
i ). To stabilize qt during training, θ

−
i are

updated much less frequently (every C steps) by copying from θi [32,
33] (C=1000 in Figure 3 (left) as well as our model training process).
Exploration and Exploitation Dilemma [13]. In the Predict stage,

actions are not always from the Q-network. A certain percentage of the
actions are randomly generated. The reason is that we should not only
exploit the intelligence of the agent to predict actions, but also explore
the unknown environment with random actions. Usually, the ratio
between exploration and exploitation is dynamically updated in the
training (i.e., the value of ε in Equation 3 decays over time). However,
choosing a proper value for this ratio (to handle the trade-off between
exploration and exploitation) is still a very challenging problem.

predicted action=

{
random action, with probability ε

argmax
a

Q(s,a;θi), with probability 1−ε
(3)

4 REQUIREMENT ANALYSIS AND APPROACH OVERVIEW

4.1 Design Requirements
We maintained weekly meetings with three domain experts in deep
learning for more than two months to distill their requirements of a
desired visual analytics system for DQN. All the experts have 3+ years
experience in deep learning and 5∼10 years experience in machine
learning. Through iterative discussions and refinements, we finally
identified the following three main themes of requirements:
R1: Providing in-depth model statistics over a training. Having an
overview of the training process is a fundamental requirement of the
experts. In particular, they are interested in the following questions:
• R1.1: How does the training process evolve, in terms of common

statistical summaries (e.g., the rewards per episode, the model loss)?
• R1.2: What are the distributions of actions and rewards, and how

do the distributions evolve over time? For example, will the action
distribution become stable (i.e., a roughly fixed ratio among different
actions in an epoch) in later training stages?

• R1.3: Can the overview reflect some statistics of the agent’s ac-
tion/movement/reward behaviors? For example, are there any desired
patterns that happen more often than others over time?

R2: Revealing the agent’s behavior patterns encoded in the experi-
ence data. Demonstrating the action/movement/reward patterns of the
agent is a strong need from the experts [4, 5], given that few existing
tools are readily applicable for this purpose.
• R2.1: Revealing the overall action/movement/reward patterns from a

large number of steps. Facing with a large number of experiences, the
experts need an effective overview to guide their pattern explorations.

• R2.2: Efficiently detect/extract patterns of interest to understand the
agent’s behavior. It is nearly impossible to scrutinize the numerous
data sequences to spot all interesting patterns (merely with visualiza-
tion). A mechanism of pattern detection/extraction is desirable.

• R2.3: Being able to present other types of data on-demand to facil-
itate comprehensive reasoning. The q, qt values, random actions,
etc., are important context information when analyzing the agent’s
behaviors. Users should be able to bring them up flexibly.

R3: Empowering segment analysis and comparisons by looking
through the agent’s eyes. This requirement enables users to dive
into the architecture of DQN, to analyze how the network works.
• R3.1: Revealing what important features are captured and how they

are captured by the agent. Specifically, the experts are curious about
the functionalities of each convolutional filter in terms of extracting
features and making action predictions for experience segments.

• R3.2: Comparing convolutional filters when processing different
experience segments at the same training stage. For example, domain
experts are interested in if the same filter always extracts the same
feature when handling different segments in the same epoch.
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Fig. 3. Left: the four stages of DQN: Predict, Act, Observe, and Learn; right: the overview of our framework to analyze and improve DQN models.

• R3.3: Comparing filters when processing the same experience seg-
ment at different stages. This requirement aims to reveal if the agent
treats the same experience segment differently in different epochs.

4.2 Approach Overview
Figure 3 (right) shows an overview of our approach to understand DQN
with DQNViz. First, we train the DQN model and collect two types of
data during the training: (1) the agent’s experiences, which are hetero-
geneous time-varying sequences (Section 5); (2) the model losses and
network parameters, which are used to assess the model quality and
read the agent’s mind at different training stages. A pre-processing on
the experience data is performed to derive useful summary statistics,
which include the average reward, average q values, etc. Second, the
DQNViz system takes the two types of data and the derived statistics as
input, and presents them to domain experts (Section 6). Aligned with
the design requirements, the components of DQNViz are organized into
three modules: (R1) model statistics, (R2) behavior patterns, and (R3)
segment analysis, which are implemented through four visualization
views. The four views, following a top-down exploration flow, present
the collected data at four levels of details: overall training level (Statis-
tics view), epoch-level (Epoch view), episode-level (Trajectory view),
and segment-level (Segment view). Lastly, we demonstrate several
case studies in which the knowledge learned from DQNViz has helped
domain experts to diagnose and improve a DQN model (Section 7).

5 TRAINING PROCESS AND DATA COLLECTION

We focus on the Breakout game to present DQNViz in this work, as it is
one of the most frequently tested/used games in previous works, and a
DQN agent can achieve superhuman performance on it.

In Breakout, the agent has five lives in each game episode. Life loss
happens when the agent fails to catch the ball with the paddle. The
game terminates if the agent loses all five lives. There are four possible
actions: no-operation (noop), firing the ball (fire), moving left (left),
and moving right (right). The agent receives rewards of 1, 4 and 7
when the ball hits bricks in the bottom two rows, middle two rows, and
top two rows respectively. Otherwise, the reward is 0. On the top of
the game scene, two numerical values indicate the current reward and
the number of lives left (e.g., they are 36 and 2 in Figure 2, left).

We trained the DQN model from [1] for 200 epochs. Each epoch
contains 250,000 training steps and 25,000 testing steps. The testing
part (the blue paths in Figure 3, left) does not update the model param-
eters, and thus is used to assess the model quality. At each testing step,
we collected the following eight types of data:
1. action: a value of 0, 1, 2 or 3 representing noop, fire, right, and left.
2. reward: a value of 0, 1, 4 or 7 for the reward from an action.
3. screen: an array of 84×84 values in the range of [0, 255].
4. life: a value in [1, 5] for the number of lives the agent has currently.
5. terminal: a boolean value indicating if an episode ends or not.
6. random: a boolean value indicating if an action is a random one.
7. q: the predicted q (a floating-point value) for the current step.
8. qt : the target q value, i.e. qt (see Section 3), for the current step.

At the training stage, the random rate ε starts with 1, decays to 0.1
in one million steps (i.e., 4 training epochs), and keeps to be 0.1 to the
end. For testing, ε is always 0.05. During data collection, if an action is
a random one, we still use the DQN to derive its q and qt value, though
the action to be executed will be the randomly generated one.

There is an inherent hierarchy in the collected experiences. A step
that composed by the eight types of data is an atomic unit. A segment is

a consecutive sequence of steps in an episode with a customized length.
An episode includes all steps from a game-start to the corresponding
game-end (five lives). A testing epoch contains 25,000 steps. In sum-
mary, the relationship for them is: step⊆segment⊆episode⊆epoch.

6 VISUAL ANALYTICS SYSTEM: DQNViz
Following the requirements (Section 4.1), we design and develop DQN-
Viz with four coordinated views, which present the data collected from
a DQN model at four different levels in a top-down order.

6.1 Statistics View: Training Process Overview
The Statistics view shows the overall training statistics of a DQN model
with line charts and stacked area charts. Those charts present the entire
DQN training process over time, along the horizontal axis.

The line charts (revealing the trend of different summary statistics
over the training) are presented as small-multiples [49] (R1.1, R1.3).
As shown in Figure 1a, the five line charts track five summary statistics
(from left to right): average rewards per episode, number of games per
epoch, average q value, loss value, and number of bouncing patterns.
Users are able to plug other self-defined statistics into this view, such
as maximum reward per episode, number of digging patterns, etc.

The two stacked area charts demonstrate the distribution of actions
and rewards over time (R1.2). The evolution of action/reward distribu-
tions provides evidence to assess the model quality. For example, by
looking at the distribution of reward 1, 4, and 7 in Figure 1-a2, one can
infer that the model training is progressing towards the correct direction,
as the high rewards of 4 and 7 take increasingly more portions over the
total reward. To the rightmost, the even distribution of reward 1, 4, and
7 reflects that the agent can hit roughly the same number of bricks from
different rows, indicating a good performance of the agent.

All charts in this view are coordinated. When users hover one chart,
a gray dashed line will show up in the current chart, as well as other
charts, and a pop-up tooltip in each individual chart will show the
corresponding information, as shown in Figure 1a (the mouse is in the
stacked area chart for the reward distribution). Meanwhile, the hovering
event will trigger the update in the Epoch view (presented next).

6.2 Epoch View: Epoch-Level Overview
The Epoch view presents the summary statistics of the selected epoch
with a combined visualization of a pie chart and a stacked bar chart, as
shown in Figure 1b (R1.2, R2.1). The pie chart shows the action/reward
distribution of all steps in the current epoch; whereas the stacked bar
chart presents the action/reward distribution of each individual episode
in the epoch. As shown in Figure 1-b2, there are 20 episodes in the
current epoch (one stacked bar for one episode), and the stacked bars
are sorted decreasingly from left to right to help users quickly identify
the episode with the maximum number of steps/rewards.

The two types of charts are linked with each other via user interac-
tions. For example, when hovering over the white sector of the pie chart
(representing noop actions), the noop portion of all stacked bars will be
highlighted, as the area of the sector is the sum of all white regions from
the stacked bars. By default, the distributions of actions and rewards are
presented in this view, as these two are of the most interest. But, users
can also plug in other variables (e.g., the step distribution in different
lives of the agent) by modifying the configuration file of DQNViz.

All views of DQNViz share the same color mapping. For example,
the red color always represents the fire action; and the purple color
always indicates 4-point reward. Therefore, the pie charts (with text
annotation in different sectors) also serve as the legends for DQNViz.
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6.3 Trajectory View: Episode-Level Exploration
The Trajectory view aims to provide an overview of all steps in one
epoch, and reveal the action/reward patterns in all episodes of the epoch.

6.3.1 Visual Design for DQN Event Sequence Data
The data collected from one episode is essentially an event sequence
(also called as a trajectory by experts [12]). We, therefore, start the
design of this view with event sequence visualization solutions, and
several key design iterations are briefly discussed as follows.

Our first design presents one episode with a line of circles represent-
ing different types of actions, as shown in Figure 4a. The color white,
red, blue, and green represent noop, fire, right, and left respectively.
The circles with the black stroke represent the actions with a reward.
Many previous works (e.g. [16, 54]) have adopted this type of design,
as it is straightforward and easy to understand. However, the design
cannot reflect the agent’s movement patterns and it is also not scalable.
To overcome these limitations, we tried to merge consecutive circles
representing the same actions as one line (Figure 4b), which can effec-
tively reveal the repeat of different actions. We also explored the spiral
layout to address the scalability issue (Figure 4c, 4d). The spiral layout
can present one entire episode on the screen, but compactly arranging
all episodes (in one epoch) with varying lengths becomes a problem.

To reveal the movement patterns of the agent (R2.2), we visualize the
displacement of the paddle to the right boundary over time (Figure 4e).
The design is based on our observation that the moving behavior of the
agent is visually reflected by the position of the paddle. For example,
the oscillation in the first half of Figure 4e indicates that the agent keeps
switching between left and right to adjust the position of the paddle.
Also, this design is scalable. It allows us to flexibly compress the curve
horizontally, like a spring, to get an entire view of a long episode (R2.1).
One limitation is that the paddle positions, though reflecting the agent’s
movement patterns, cannot accurately reflect the action taken by the
agent. For example, in the right half of Figure 4e, the paddle stays at
the leftmost position (the top side). The action that the agent is taking
now can be noop, fire (fire does not change the paddle position), or left
(the paddle is blocked by the left boundary and cannot go further). To
address this issue, we overlay the action circles/lines onto the curve.
From the visualization (Figure 4h), we found that the agent takes three
types of actions (i.e., left, noop, and fire) in the right half of Figure 4e.

Lastly, this design can synchronize other types of data with the action
data (R2.3). As shown in Figure 4h, some actions are highlighted
with background bars in cyan, indicating they are random actions.
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Fig. 5. A video clip.

Bars with color light green, purple, and orange
encode the reward of 1, 4, and 7 respectively
(Figure 4f, 1-c5). We also design glyphs for ac-
tions with a life loss, as shown in the rightmost
of Figure 4f. This glyph is a gray bar with 0∼4
dark red rectangles inside, indicating the num-
ber of remaining lives after the life loss action.
The terminal information is also encoded in this
glyph (gray bars with 0 dark red rectangle). The
q and qt values are presented as transparent area
charts with green and blue color respectively
in the background (Figure 4g, 4h). When users click the action cir-
cles/lines, a video clip (Figure 5) will pop up and show the screen data
(a sequence of screens). The two vertical yellow bars on the two sides
of the video are the progress bars. We found they are very useful in
reflecting the progress of static videos, e.g., when the agent is repeating
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Fig. 6. Clustering segments (segment length is 100) in epoch 120.

the noop action. The color bar on the bottom shows the predicted action.
It changes from frame to frame when the video is playing. To avoid vi-
sual clutters in the Trajectory view, users can show/hide the eight types
of data on demand through a set of check-box widgets (Figure 1-c2).

6.3.2 Segment Clustering and Pattern Mining
It is not a trivial task to visually identify the common patterns from the
large number of actions in one epoch. To address this issue, we adopted
two techniques of segment clustering (R2.1) and pattern mining (R2.2).
To cluster segments, we first cut the episodes in one epoch into many
smaller segments and cluster them using hierarchical clustering [18].
A segment is expressed by a sequence of values, indicating the paddle
positions. The segment length is set to 100 by default, but it can be
adjusted on-demand from the configuration file of DQNViz. To better
quantify the similarity between segments, we used the dynamic time
warping algorithm (DTW) [40]. Specifically, for a pair of segments
(i.e. two temporal sequences), the DTW algorithm can find the best
temporal alignment between them and derive a more comprehensive
similarity score. Applying DTW to all pairs of segments will derive a
similarity matrix for all segments in one epoch, which is the input of the
clustering algorithm. When clicking the “Tree” button in Figure 1-c1,
a dendrogram visualization of the clustering results will show up (Fig-
ure 6a). Selecting different branches of the dendrogram will highlight
different clusters of segments in the Trajectory view (Figure 6b).

We found some typical movement patterns of the agent while explor-
ing the clustering results. By defining those patterns and mining them
in other epochs, we can provide more insight into the agent’s behaviors.
The regular expression [2, 48] is used to define a pattern as it is simple
and flexible. For example, an action sequence can be expressed as
a string (of 0, 1, 2, and 3) and a predefined regular expression can
be used to search on the string to find when and where a particular
pattern happens. Table 1 presents two example movement patterns, i.e.,
repeating and hesitating (frequently switching between left and right).

Table 1. Formalizing action/reward patterns with regular expressions.

Pattern Regular Exp. Explanation
repeating 0{30,} repeating noop (0) for at least 30 times.

hesitating (20*30*){5,} switching left (2) and right (3) for at least 5 times. There
might be multiple noop actions between the left and right.

digging
10+10+40+

40+70+70+

the two 1s, 4s, and 7s are where the ball hits the bottom,
middle and top two rows of bricks, the 0s in between are
the round trip of the ball between the paddle and bricks.

bouncing (70+){5,} hitting top 2 rows for at least 5 times.

Reward patterns can be defined similarly. For example, we found that
the agent becomes very smart in later training stages, and it always tries
to dig a tunnel through the bricks, so that the ball can bounce between
the top boundary and the top two rows to achieve 7-point rewards. The
digging and bouncing pattern can be defined using regular expressions,
as shown in Table 1. We can also visually verify the patterns from the
bars in the Trajectory view (Figure 1-c5). It is worth mentioning that
the regular expression for each pattern can be relaxed. For example,
the digging pattern in Table 1 can be relaxed to 10+40+40+70+.

Tracking patterns is an effective way to provide insight into the
evolution of the agent’s behaviors. For example, the decreasing of
repeating indicates the agent became more flexible in switching among
actions. The increasing of digging reflects the agent obtained the trick
of digging tunnels. The number of a pattern can be defined as a metric
(R1.3) and plugged into the Statistics view for overview (Figure 1-a1).
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6.4 Segment View: Segment-Level Interpretation

6.4.1 See through the agent’s eyes

The Segment view targets to reveal what the agent really sees and how
it gains such vision in the screen states from a trajectory segment. To
achieve this, we dive into the DQN structure [33] (Figure 7, left) and
reveal what have been extracted by the neural network (R3.1). The
input of the network is a state of size 84×84×4 (in green), and the
output is a vector of four values (in yellow) representing the predicted
rewards for the four actions. Among the four values, the maximum one
is the predicted q, and its index is the predicted action. Between the
input and output are 3 convolutional and 2 fully connected layers.

The filters in the convolutional layers are the basic computational
units that extract features from the input states. We focus on them to
interpret what the agent sees. The four numbers in each gray rectangle
of Figure 7 (left) represent the number of filters, the width and height
of each filter, and the number of channels. There are 32, 64, and 64
filters in the first, second, and third convolutional layer (160 in total).

Algorithm 1 Picking out the maximumly activated state (max state)
from a segment (screens), and generating the corresponding saliency
map (map) of the state for each convolutional filter in each layer.

1: screens = [s1,s2, ...,sn] // input: a segment of n screens
2: states = [{s1,s2,s3,s4}, ...,{sn−3,sn−2,sn−1,sn}] // n-3 states
3: for i = 0; i < layers.length; i++ do
4: for j = 0; j < layers[i]. f ilters.length; j++ do
5: activations = DQN. f prop(layers[i]. f ilters[ j], states)
6: max idx = argmax(activations)
7: max state = states[max idx]
8: max activation = activations[max idx]
9: map = DQN.b prop(layers[i]. f ilters[ j], max activation)

10: out put[i][ j] = blend(max state,map) // algorithm output
11: end for
12: end for

Algorithm 1 shows how we visualize what features each filter ex-
tracted from an input state. The algorithm includes three main steps.
First, given a segment, we find the state that is maximumly activated
by each of the 160 filters. Specifically, for each filter in each layer, we
first apply forward propagations on all the input states of the segment
(Algorithm 1, line 5) to get the state (max state in line 7) that is max-
imumly activated by the filter. Then, using the activation of this state
(max activation in line 8), we perform guided back-propagations to
generate a saliency map (map in line 9) for the state. The saliency map
will have the same size with the input state (i.e., 84×84×4), and the
pixel values in the map indicate how strong the corresponding pixels of
the input state have been activated by this filter (the back-propagation
computes the gradient of the maximum activation on the input state,
details can be found in [46]). Finally, we blend the input state with its
corresponding saliency map (blend in line 10). The blending image
can expose which region of the input state has been seen by the current
filter (like an eye of the agent). For example, Figure 9a shows the
blending result of the second screen of a state with its corresponding
saliency map. We can see that the filter extracts the ball from the screen.

6.4.2 Analysis components with the agent’s eyes

The Segment view enables users to analyze the 160 filters along with the
160 states they have maximumly activated in three sub-views (Figure 7,
right): a parallel bar charts view, a principal component analysis (PCA)
view, and a view showing the average state of the input segment.

The bar charts view (Figure 7a) shows the size of features that
individual convolutional filters extracted from the input states. Each
row is a bar chart representing one segment (four rows are in the view
in Figure 7a). Each bar in each row represents a filter from the DQN,
and the height of the bar indicates the size of the feature that the filter
extracted (i.e., the number of activated pixels in the corresponding
saliency map, see Algorithm 1). The color red, green, and blue indicate
the filter is from the first, second, and third layer respectively. Different
rows represent the filters for different source segments selected by
users, and the corresponding filters are linked together across rows for
comparisons (R3.2, R3.3). Clicking the “Sort Filters” button in the
header of this view will sort the bars based on their height. Users can
focus on filters in layer 1, 2, 3 or all of them for analysis by interacting
with the widgets in the header (currently all filters are in analysis). The
row with the pink background (the 4th row) is the segment in selection
and currently analyzed in the other two sub-views. Clicking on different
rows will update contents of the other two sub-views.

The PCA view (Figure 7b) presents how the filters can capture similar
or dissimilar features from the screen states (R3.1). It projects the 160
convolutional filters of the selected row based on their saliency map,
i.e., reducing the 84×84×4 dimensional saliency maps to 2D using
PCA. Each circle in this view represents one filter, and the color red,
green, and blue indicate the filter is from the first, second, and third
layer. The size of circles encodes the size of features extracted by the
filters. Moreover, the circles in this view are coordinated with the bars
of the selected row in the bar charts view. Clicking any bars/circles will
pop up a four-frame video showing the blending result of the input state
and the corresponding saliency map. Figure 9a shows the second frame
of the pop-up video when clicking the 8th filter in the second layer
(position indicated in Figure 7b). Semantic zoom (the user interfaces in
the bottom right of this view) is also enabled to reduce visual clutters.
This interaction can enlarge the view while maintaining the size of
circles, which will mitigate the overlap of the circles by increasing the
distances among them.

The four screens (Figure 7c) show the aggregated results of states
from a selected segment. For example, the top-left screen is the result of
averaging the first screen from all input states of the selected segment.
We also introduce some interactions to help users easily observe which
part of the screen is seen by the filters. For example, when users select
different convolutional filters from the bar charts view (via brushing)
or from the PCA view (via lasso selection), the union of the correspond-
ing saliency maps will be highlighted on the aggregated screens. In
Figure 7c, the two selected clusters of filters (Figure 7b, circles in the
green and red lasso) capture the features that the ball is digging the left
and right corner of the bricks respectively (R3.1).

7 CASE STUDIES

We worked with the same three domain experts (E1, E2, and E3) in the
design stage of DQNViz on several case studies. Here, we present two
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of them: one emphasizes how DQNViz can help the experts understand
the DQN training process; the other shows how the experts use DQNViz
to diagnose and improve the exploration rate of the DQN model.

7.1 Unveiling the model training evolution
Overall training statistics. The experts all confirmed that the train-
ing was successful based on observations from the Statistics view in
Figure 1a. First, both average reward and average q value are in-
creasing, indicating the agent expected and was able to receive higher
and higher rewards. Meanwhile, the decreasing number of games
(nr games) shows the agent could survive longer in individual episodes
(R1.1). Second, the experts observed that the agent became more in-
telligent and strategic to receive higher points as the training evolves
(R1.3). For example, in Figure 1-a1, the agent adopted more bouncing
patterns that can collect high points along with the training. Also, the
reward distribution in Figure 1-a2 echoes the same observation as the
agent obtained an increasing amount of 4 and 7 points over time (R1.2).

One interesting observation pointed by one expert is that the ac-
tion distribution is very diverse even in the later training stages (R1.2).
However, the agent can still achieve high rewards with diverse action
distributions. This indicates that by merely looking at the action distri-
bution, it is difficult to understand why and how the agent achieved high
rewards. It also calls for the investigation of detailed action patterns,
which is conducted using the Trajectory view later on by the experts.

The experts also spotted some abnormal epochs. For example, the
reward distribution in epoch 37 did not follow the general trend in the
stacked area chart. This observation led the experts to select epoch 37
and drill down to explore its details in the Epoch view.

Epoch statistics. From the statistics shown in the Epoch view, the
experts suspected that the agent repetitively moved the paddle left and
right in epoch 37, but those moves were mostly useless. As shown
in Figure 8a, the left and right actions take 31% and 47% of the total
25,000 steps in this epoch (R1.2). Meanwhile, it can be imagined that
the agent mostly hit bricks in the bottom two rows as the achieved
rewards were mostly 1-point reward (Figure 8b). From the stacked bar
charts in Figure 8a and 8b, the experts observed that most episodes in
this epoch lasted for less than 0.6k steps (much shorter than normal
episodes) and achieved less than 5 points. Therefore, the large number
of left and right did not contribute much to a better performance (R2.1).

Action/Reward patterns in episodes. Drilling down to the agent’s
movement patterns in the Trajectory view, the experts confirmed that
the large number of left and right actions in epoch 37 were mostly
useless. As shown in Figure 8c, the agent repeated a lot of hesitating
and repeating patterns, which contributed nothing to achieving rewards.
By highlighting the random actions (cyan bars in Figure 8c), the experts
also learned that random actions play an important role in terminating
the hesitating and repeating patterns. Moreover, terminating those pat-
terns may need multiple random actions (e.g., the two random actions
in Figure 8-c1 are not sufficient to terminate the hesitating pattern).

The experts were also interested to know the agent’s behaviors in
normal epochs. Among the many epochs whose statistics follow the
general trend, the experts randomly selected epoch 120 to explore. A
few hesitating and repeating patterns can still be found in this epoch as
shown in Figure 1-c3 and 1-c7. Moreover, many digging and bouncing
patterns were found in this normal epoch. From the exploration of
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Fig. 9. (a) Blending a state with its saliency map. (b,c,d) what the agent
sees from the segment in the 1st, 2nd, and 4th row of Figure 7a.

the hierarchical clustering result (Figure 6), the experts found many
similar movement patterns shown in Figure 1-c4 and 1-c6. By zooming
into Figure 1-c4, visualizing the reward data, and replaying the video
clips, the experts found that the agent was digging a tunnel through the
bricks and a bouncing pattern appeared right after the digging pattern,
as shown in Figure 1-c5 (R2.2, R2.3). In the digging pattern, the agent
periodically moved the paddle to catch the ball and received 1-point, 4-
point, and 7-point rewards with regular step intervals. In the successive
bouncing pattern, the agent received 7-point rewards very frequently.

It is also obvious that the q value kept increasing in digging, but
immediately started decreasing after the tunnel was created. The ex-
perts interpreted this observation as follows. During digging, the agent
can see the progress of the tunnel (from input states), and the expected
reward keeps increasing as the tunnel will potentially result in bounc-
ing (i.e., keep getting high rewards). However, when the bouncing
starts, the bricks (especially in the top two rows) keep being destroyed,
therefore, the expected future reward starts decreasing. The experts
also found that when bouncing happens, the paddle mostly stays at the
leftmost position, which is “quite phenomenal”. This deepens their
understanding on the successful playing strategies of the agent and they
would like to conduct further theoretical investigations on this.

Segment-level investigations. Intrigued by digging and bouncing
patterns, the experts were curious about how the agent can observe
states and make the action predictions. This motivated them to select
some segments of interest and analyze them in the Segment view (R3.1).
From there, they found that filters from higher convolutional layers
usually have stronger activations and capture larger and more diverse
features from the input states. For example, to further investigate the
digging pattern in Figure 1-c4, the experts selected that segment (step
263∼485 of episode 12 in epoch 120) into the Segment view (the fourth
row in Figure 7a). By exploring it, they found that: (1) the height of
bars representing filters from layer 1 (red), 2 (green), and 3 (blue) shows
an increasing trend (Figure 7a); (2) the circles representing filters from
three layers show an inner-to-outer layout in the PCA view (Figure 7b).

By examining the digging segment, the experts also learned that
the agent dug tunnels from both sides of the bricks and they identified
what filters captured the digging on different sides. Specifically, the
two groups of filters in the green and red lasso of Figure 7b are filters
that captured the digging on the left and right of the scene (Figure 7c).
From the aggregated saliency map of all filters in Figure 9d, it can be
seen that the agent moves the paddle between the left boundary and the
middle of the scene to catch the ball and dig tunnels from both sides.

Compare segments from the same epoch (R3.2). To have more
understandings on the functionality of different filters, the experts also
compared the above digging segment with other segments in this epoch.
For example, one expert selected another segment shown in Figure 1-c8,
where the agent moved the paddle all the way to the left then to the
right. Figure 1d shows the fourth average screen and the aggregated
saliency map from all filters for this segment. It is clear that the agent
tracked the moving path of the ball, i.e., A-B-C-D-E-F, and it moved
the paddle all the way to the left then to the right to catch the ball in
B and F . By comparing the filters in these two segments, the experts
found that certain filters behave similarly, e.g., filter 16 from the third
convolutional layer traces the ball in both segments. However, some
filters also have dramatically different functions, e.g., filter 23 in the
second layer stares at the top-left tunnel in the digging segment; while
it traces the ball in the other segment. This result provides evidence
that filters in the same stage may not always have the same functions.

Track a segment over time (R3.3). The experts also wanted to under-
stand how filters evolved over time by comparing the same segment



across epochs. As shown in the top three rows in Figure 7a, one expert
tracked the segment in Figure 1-c8 in epoch 1, 10 and 120. The blended
saliency maps are shown in Figure 9b, 9c, and 1d (the saliency maps
from all filters on the fourth average screen). From them, the expert
understood that the agent did not have a clear vision on the input states
in early stages (Figure 9b), and it gradually developed its attention on
important parts, e.g. the moving path of the ball (Figure 9c, 1d).

7.2 Optimizing the Exploration Rate (Random Actions)
One expert was very interested in the random actions, especially after
he saw that random actions can terminate bad movement patterns in
Figure 8c. Here, we describe the experiments that we worked with him
to diagnose and improve the use of random actions using DQNViz.

Experiment 1: No random action. The expert first hypothesized
that random actions are not necessary after the model is well trained.
The logic behind this is that an action predicted by a well-trained agent
should be better than a randomly generated one. To test this, the expert
set the exploration rate (ε in Equation 3) to 0, after 200 training epochs,
and used the agent to play the Breakout for 25,000 steps (a testing
epoch) to see if anything will go wrong (by default ε=0.05 in testing).

The result of the 25,000 steps in the Trajectory view is shown in
Figure 10a. The expert had two observations: (1) there is only one
episode in the 25,000 steps, and the episode is very long; (2) the agent
keeps repeating the noop action in roughly 60% of the episode.

In detail, the single and long episode can roughly be cut into three
phases as labeled in Figure 10a. In phase I (Figure 10-a1), the agent
played very well in the first ∼1,080 steps, and this phase ended with
a life loss. In phase II, the agent kept repeating noop for ∼15,000
steps (i.e., trapped by the environment). By looking at the screen
data (Figure 10c) at the position indicated in Figure 10-a2, the expert
understood that the paddle stays around the middle of the scene and the
ball is not in the scene (as there is no fire action). This indicates that the
agent does not know that he needs to fire the ball at the beginning of a
game, but just keeps waiting for the ball. The expert was very surprised
about the agent’s movement pattern in phase III, i.e., how did the agent
get out of the trap without the help of random actions? After checking
the screen data at the position indicated by Figure 10-a3, he realized
that the game has crashed actually, as the numbers for reward and life
disappear and the entire scene becomes lighter (Figure 10d).

Experiment 2: Random actions on demand. From Experiment 1,
the expert learned that random actions are necessary. Next, he was
wondering if one can control the initiation of random actions when they
are really needed. The expert hypothesized that random actions are
needed when the agent keeps repeating the same patterns but gets no
reward (e.g. hesitating in Figure 8c, and noop in Figure 10-a2).

Experiment 2 tested this hypothesis with a pattern detection (PD)
algorithm, which can be explained as follows. First, a buffer that stores
the latest 20 steps is maintained. At each step of the game, if the agent
received rewards in the latest 20 steps, no random action is needed.
However, if the agent did not receive any reward, but kept repeating the
same action/pattern in those steps (detected using regular expressions,
see Section 6.3.2), a random action would be introduced. As observed
before, a repeating pattern usually has a basic repeating unit which is
very short, e.g., the basic unit of the hesitating pattern in Figure 4h is
left-left-right-right and the pattern length is 4. Experiment 2 checks
pattern length from 2∼7, and a random action is introduced if a pattern
has been repeated for 3 times. For example, if the latest three actions
are 230 (right-left-noop) and this pattern can be found 3 times in the
latest 9 steps, then the next action will be a random action.

Figure 10b shows the result of applying the PD algorithm to DQN.
Similarly, only one episode is generated in the 25,000 steps, and the
episode can be cut into three similar phases. The expert first noticed
that the PD algorithm worked well in terminating the repeating of one
action in phase I (before ∼1,800 steps). For example, in Figure 10-b1,
the noop action has been repeated for 20 times, and the agent introduced
several random actions and got out of the repeating of noop finally.

However, the expert also observed that the agent was trapped by
the environment again in phase II. After zooming into this phase, the
expert found that the agent kept repeating a long pattern with the length

of around 50 steps (Figure 10-b2). By replaying the game, as shown in
Figure 10e, he realized that the agent kept moving the paddle between
point A and D to catch the ball, and the ball repeated the loop A-B-
C-D-C-B-A. No random action was introduced, as the length of the
repeating pattern exceeded the threshold (i.e., 7) in the PD algorithm.

The game crashed again in phase III. However, by exploring dif-
ferent segments in this phase, we could still see that the PD algorithm
worked well in introducing random actions (e.g., Figure 10-b3, b4, b5).

Experiment 3: Improved random actions. With the lessons learned
in Experiment 2, the expert applied the following changes to the PD
algorithm: (1) changing the maximum pattern length from 7 to 50; (2)
increasing the buffer size from 20 to 100; (3) introducing a random
action if a pattern repeats twice. With these changes, the agent was able
to play the game very well and no longer trapped by the environment.
In 25,000 steps, the agent played 12 episodes and received 5,223 total
rewards. The number of random actions in those steps is 501, which is
much less than 1,250 (i.e., 5% of 25,000 in the original setting).

Table 2. Statistics of random actions per epoch (averaged over 10 runs).

steps episodes total rewards random actions
ε=0.05 (5%) 25,000 16.6 4198.6 1269.4
PD Algorithm 25,000 11.4 4899.2 503
ε=0.02 (2%) 25,000 9.9 3780.8 492.1

To quantitatively evaluate this improvement, the expert compared the
PD algorithm with other two baselines using ε=0.05 and ε=0.02, as
shown in Table 2 (results are averaged over 10 runs). As we can see, the
PD algorithm worked better than the other two random-only methods.
Compared to the method of ε=0.05, the PD algorithm introduced less
random actions, but achieved∼700 more rewards in 25,000 steps. Also,
it led to fewer life losses, as the number of episodes is less than the
baseline using ε=0.05. Compared to the method of ε=0.02, the PD
algorithm obtained much higher total rewards in 25,000 steps, though
the number of random actions was similar. This comparison further
verifies that the PD algorithm can effectively control random actions.

7.3 Feedback from Domain Experts
We collected the experts’ feedback via in-depth interviews after the case
study sessions. Overall, all experts believed that the tool is “extremely
helpful to have actionable insight into the (model) evolution”, and “has
great potentials to comprehend and improve deep RL models”.

In terms of aiding their understanding of the model, all experts
agreed that the overall training statistics are the basic need as they “use
them in their daily model building practice”. The overall trend and
distribution of DQN-specific metrics (e.g., the number of bouncing pat-
tern) really “provide a glimpse into the evolution details” and “would
jump-start their diagnosing towards the hurdle of model training”.

All experts believed the most useful component is the Trajectory
view, where they “could explore, observe, and extract meaningful
patterns” and “ponder how the agent developed its playing strategies”.
All experts spent the most time on this view to explore useful patterns
that could help them comprehend and potentially improve the model.

“It is also quite entertaining to look at the video play-back. This level
info is absent in other tools.”, commented by E3. Another example
is the three experiments on random actions. Towards the end of that
study, E1 concluded that “the visualization had significantly improved
his understanding about random actions”. He explained that the final
choice of “the (pattern) length to be 50 is not random”. In fact, that
value should be (or close to be) the upper bound for the number of steps
that the ball needed for a round trip (between the paddle and bricks).

The experts expressed that the Segment view is “very fun to play with”
and appreciated this view “provides many details about how the agent
parses the game screens”. E1 and E2 both made a connection between
this view and the “attention mechanism” [29,45] by commenting “it is
very enlightening to know layers have attentions over different parts of
the screens”. E1 even proposed a hypothesis that “filter activation in a
complicated network may correspond to different playing strategies”.

Additionally, the experts also mentioned several desirable features
and suggested some improvements. E2 was first confused with the
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Fig. 10. (a, b) Result of Experiment 1, 2; (c, d) game screen at a2, a3; (e) ball trajectory for segment b2, the ball follows the loop A-B-C-D-C-B-A.

visual encoding of paddle positions in the Trajectory view, though later
on she understood it with some explanations. She felt “(there is) a
disconnection between the horizontal location in the game interface and
the vertical position encoding”, and “some labels (at the vertical axis of
the Trajectory view) may be helpful”. For the Segment view, two experts
thought “there is a high learning curve”, and “it is especially true for
the layout of filters”. “Showing network structures and highlighting
where those filters come from may help”, suggested by E1. The three
experts also shared their concerns on the generalization of DQNViz. E3
pondered “how this tool can visualize games with a larger action space”
or “even real games, like AlphaGO [43]”. These comments are very
useful in guiding our further improvements of DQNViz.

8 DISCUSSION, LIMITATIONS AND FUTURE WORK

Dimensionality Reduction. The Segment view uses a dimensionality
reduction algorithm to project the high-dimensional saliency maps
(resulted from individual filters) to 2D for visualization and interaction.
The use of the PCA algorithm came out in one of our discussions
with the domain experts and it turns out that the algorithm is simple,
sufficient for our objective, and involves few parameters to tune with.
However, it also suffers from many drawbacks as shown in previous
works [6, 7, 21], and we do believe that other dimensionality reduction
algorithms can be used here as alternative solutions. Most notably, we
have tested the t-SNE algorithm [30] and demonstrated some results of
it with different parameter settings in our supplementary material. Both
algorithms lay out filters of higher layers in outer locations, indicating
higher layer filters usually capture more diverse features.

Generalization. DQNViz can be applied to several other Atari games
that involve simple movements, e.g., Pong and Space-Invader. However,
as a preliminary prototype, it is not readily applicable to all Atari games,
especially the ones with sophisticated scenes and large action spaces,
like Montezuma’s Revenge. This limitation motivates us to generalize
DQNViz from several directions in the future. The first direction is to
adapt the Trajectory view to games with a larger action space. Currently,
this view can only capture movement patterns in 1D (i.e., moving
horizontally or vertically). Enabling the view to capture 2D movement
patterns is our first planned extension. In detail, we can divide the
possible actions into three categories: horizontal movement actions,
vertical movement actions, and other actions. Multiple Trajectory views
can be used to visualize actions in different categories, and coordinated
interactions can be used to connect those views to retrieve screen states
and observe action patterns. Second, we believe visual analytics can
help the diagnoses and improvements of DQN far more than optimizing
the exploration rate. Our next attempt targets on prioritizing the agent’s
experiences [41] through visualization to accelerate the training. Lastly,
we also want to explore if any components of DQNViz or the designs
in our work can be reused to analyze other RL models. For example,
the four-level exploration framework may be directly applicable to
other RL models, though the details in each level will have many
differences. The idea of looking from the agent’s eyes through guided
back-propagations could also be reused in other deep RL models.

Scalability. One potential challenge with DQNViz is its scalability,
including large parameter settings, games with a very long training
process, and so on. As to address the large parameter settings, some
components of DQNViz should be improved to accommodate them. For
example, the Trajectory view currently presents all actions in one epoch
containing 25,000 steps. However, if the number of steps in an epoch is
very large, the Trajectory view will have to aggregate and smooth those
steps, and use semantic zoom to help users explore the sequence pat-
terns. Similarly, the scalability problem may also occur when extending
DQNViz to other games with a very long training process. For example,
in certain games, the length of individual game episodes may be too
long to be presented in the Trajectory view. In those cases, we can first
cut a long episode into many very short segments and use the most fre-
quently appeared action in each segment to represent the segment (i.e.
binning and voting). In short, intelligent data aggregations, effective
uses of the visualization space, and friendly user interactions always
deserve more considerations in addressing the scalability problem.

More Future Works. We are also interested in exploiting the power
of regular expressions in pattern mining, and more user-defined regular
expressions may be used to explore the agent’s experiences. It may
also be possible to extract certain patterns using automatic data mining
algorithms. Additionally, our system analyzes DQN models off-line
currently (i.e., after training). Enabling domain experts to directly
interact with the model training process (i.e., guiding the agent to
learn specific behaviors during training) is an important and interesting
direction for us to investigate in the future. Lastly, the current version
of DQNViz targets to serve domain experts with certain knowledge on
DQN models. Simplifying the complex interface and generalizing the
domain-specific components of DQNViz to extend the tool to common
users are also potential research directions that worth to be explored.

9 CONCLUSION

In this work, we present DQNViz, a visual analytics system that helps
to understand, diagnose, and potentially improve DQN models. The
system reveals the large experience space of a DQN agent with four
levels of details: overall training level, epoch-level, episode-level, and
segment-level. From our thorough studies on the agent’s experiences,
we have identified typical action/movement/reward patterns of the agent,
and those patterns have helped in controlling the random actions of
the DQN. The insightful findings we demonstrated, the improvements
we were able to achieve, and the positive feedback from deep learning
experts validate the effectiveness and usefulness of DQNViz.

ACKNOWLEDGMENTS

The authors would like to thank Wei Zhang, Yan Zheng, and Dean
Galland from Visa Research for their insightful comments, valuable
feedback, and great helps. This work was supported in part by US
Department of Energy Los Alamos National Laboratory contract 47145,
UT-Battelle LLC contract 4000159447, NSF grants IIS-1250752, IIS-
1065025, and US Department of Energy grants DE-SC0007444, DE-
DC0012495, program manager Lucy Nowell.



REFERENCES

[1] Github simple dqn. https://github.com/tambetm/simple_dqn. Ac-
cessed: 2018-02-08.

[2] A. V. Aho and J. D. Ullman. Foundations of Computer Science (Chapter
10: Patterns, Automata, and Regular Expressions). Computer Science
Press, Inc., New York, NY, USA, 1992.

[3] O. Anschel, N. Baram, and N. Shimkin. Deep reinforcement learning with
averaged target DQN. CoRR, abs/1611.01929, 2016.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath.
A brief survey of deep reinforcement learning. arXiv preprint,
http://arxiv.org/abs/1708.05866, 2017.

[5] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine,
34(6):26–38, 2017.

[6] M. Aupetit. Visualizing distortions and recovering topology in continuous
projection techniques. Neurocomputing, 70(7-9):1304–1330, 2007.

[7] M. Aupetit, N. Heulot, and J.-D. Fekete. A multidimensional brush for
scatterplot data analytics. In Visual Analytics Science and Technology
(VAST), 2014 IEEE Conference on, pp. 221–222. IEEE, 2014.

[8] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade
learning environment: An evaluation platform for general agents. J. Artif.
Intell. Res.(JAIR), 47:253–279, 2013.

[9] R. E. Bellman. Dynamic Programming. Dover Publications, Incorporated,
2003.

[10] A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convolutional neural
networks learn class hierarchy? IEEE transactions on visualization and
computer graphics, 24(1):152–162, 2018.

[11] J. Choo and S. Liu. Visual analytics for explainable deep learning. IEEE
Computer Graphics and Applications, 38(4):84–92, Jul 2018. doi: 10.
1109/MCG.2018.042731661

[12] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei.
Deep reinforcement learning from human preferences. In Advances in
Neural Information Processing Systems, pp. 4302–4310, 2017.

[13] V. François-Lavet, R. Fonteneau, and D. Ernst. How to discount deep
reinforcement learning: Towards new dynamic strategies. NIPS Deep Re-
inforcement Learning Workshop, arXiv preprint arXiv:1512.02011, 2015.

[14] B. Goertzel and C. Pennachin. Artificial general intelligence, vol. 2.
Springer, 2007.

[15] D. Gotz and H. Stavropoulos. Decisionflow: Visual analytics for high-
dimensional temporal event sequence data. IEEE transactions on visual-
ization and computer graphics, 20(12):1783–1792, 2014.

[16] S. Guo, K. Xu, R. Zhao, D. Gotz, H. Zha, and N. Cao. Eventthread:
Visual summarization and stage analysis of event sequence data. IEEE
transactions on visualization and computer graphics, 24(1):56–65, 2018.

[17] H. V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta, eds., Advances in Neural
Information Processing Systems 23, pp. 2613–2621. 2010.

[18] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning: data mining, inference and prediction (second edition). Springer,
2009.

[19] F. S. He, Y. Liu, A. G. Schwing, and J. Peng. Learning to play in a
day: Faster deep reinforcement learning by optimality tightening. CoRR,
abs/1611.01606, 2016.

[20] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. arXiv preprint arXiv:1710.02298,
2017.

[21] N. Heulot, J.-D. Fekete, and M. Aupetit. Proxilens: Interactive exploration
of high-dimensional data using projections. In VAMP: EuroVis Workshop
on Visual Analytics using Multidimensional Projections. The Eurographics
Association, 2013.

[22] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. Activis: Visual ex-
ploration of industry-scale deep neural network models. IEEE transactions
on visualization and computer graphics, 24(1):88–97, 2018.

[23] J. Kober and J. R. Peters. Policy search for motor primitives in robotics.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds., Advances in
Neural Information Processing Systems 21, pp. 849–856. 2009.

[24] V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms. SIAM J.
Control Optim., 42(4):1143–1166, 2003.

[25] M. Krstajic, E. Bertini, and D. Keim. Cloudlines: Compact display of
event episodes in multiple time-series. IEEE transactions on visualization
and computer graphics, 17(12):2432–2439, 2011.

[26] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training pro-
cesses of deep generative models. IEEE transactions on visualization and
computer graphics, 24(1):77–87, 2018.

[27] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE transactions on visualization
and computer graphics, 23(1):91–100, 2017.

[28] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of ma-
chine learning models: A visual analytics perspective. Visual Informatics,
1(1):48–56, 2017.

[29] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-
based neural machine translation. In EMNLP, pp. 1412–1421. The Asso-
ciation for Computational Linguistics, 2015.

[30] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[31] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu. Un-
derstanding hidden memories of recurrent neural networks. In Visual
Analytics Science and Technology (VAST), 2017 IEEE Conference on.
IEEE, 2017.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
In NIPS Deep Learning Workshop. 2013.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[34] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal
event sequence simplification. IEEE transactions on visualization and
computer graphics, 19(12):2227–2236, 2013.

[35] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems,
pp. 4026–4034, 2016.

[36] A. Perer and J. Sun. Matrixflow: temporal network visual analytics to
track symptom evolution during disease progression. In AMIA annual
symposium proceedings, vol. 2012, p. 716. American Medical Informatics
Association, 2012.
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