End-to-End In Situ Data Processing and Analytics

Extreme-scale Distribution-based Data Analysis

Han-Wei Shen

Professor

Department of Computer Science and Engineering

The Ohio State University

In Situ Processing and Visualization

- ExaFLOPs supercomputers is becoming a reality (exa = 1,000,000,000,000,000)
 - Number of cores per processor will increase
 - Memory per core will decrease

- The speed and size of memory and I/O devices cannot keep pace with the increase of compute power
 - Cost of moving data will increase
- It will be very difficult for scientists to store and analyze even a small portion of their simulation output

In situ Visualization

Generating Visualization While the Simulation is Still Running

Characteristics of In Situ Visualization

- Data are transient; only available for a short time
- Mainly batch mode processing; Interactive exploration is not possible
- Need to know what is needed a priori; Salient information might not be found
- Limited parameters to explore; Sophisticated visualization is not possible

In Situ Visualization Strategies

- Generate images from preselect parameters (e.g. Catalyst, Libsim)
- Database from a large collection of images (e.g. Cinema Project)
- Visualization with explorable contents (e.g. Explorable Images)
- Feature extraction (e.g. Contour trees, flowlines)
- Data Reduction Compact data representation or representative samples or time steps (e.g. compression, key time steps)

In Situ Visualization Software

- Application aware vs. not
- Tightly or loosely coupled
 - Shallow or deep copy
 - Space or time share
 - Data synchronization and communication
- Software control (automatic or human control)
- Proximity: Same or different machines
- Single or multi purpose (e.g. ADIOS) APIs
- Types of output (data, images, etc)

Distribution-based In Situ Analytics @ OSU

Approaches

- Probability Distributions collected as in situ time
 - Block or particle based
 - Histograms, GMMs
 - Multivariate
- Distribution-based post-hoc analysis
 - Resampling based visualization
 - Direct inference based on distributions
 - Interactive data queries

- Preserve
 - Important data characteristics
 - Field values and feature locations
- Allow
 - Post-hoc analysis with standard visualization capabilities
 - Quantitative analysis of quality of uncertainty
 - Interactive data driven queries
- Predict
 - Results of simulations with novel parameter configurations

View Dependent Distributions Proxy

Motivations

- Image space approaches have emerged as a promising method
 - The scale of data defined in image space (~ 10⁶ pixels) is relatively smaller than in object space (~ 10^{9~15} voxels)
- Freely explore the occluded features
 - Existing image-based approaches have limited ability to explore the occluded features
- Inevitable data loss in the compact representation

Methods

- Collects samples during volume ray casting
- Allows change of transfer functions in post-hoc analysis
- Errors are constrained in the depth dimension
- Warping the samples to different views are possible

View Dependent Proxy Construction

- Image-based proxy is constructed at each selected view
- Subpixel ray casting to collect samples in the pixel frustum
- Histogram is used to statistically summarize data in the pixel frustum

Irregular Frustum Subdivision

- Histogram does not keep samples' order in the pixel frustum
 - Samples' order is critical to provide depth cue in rendering
- A pixel frustum is sub-divided into sub-frustums which are summarized by histograms
 - More sub-frustums: more accurate samples' order and store more histograms

Data Visualization in Post Analysis Machine

Data Visualization in Post Analysis Machine

Importance Sampling

- Samples drawn from a histogram are biased towards to the value with high frequency
 - Samples with high frequency may have low opacity
 - Interesting features consist of samples with high opacity
- Importance sampling
 - Combine histogram and opacity function

Curve: opacity function

Importance Sampling

- Samples drawn from a histogram are biased towards to the value with high frequency
 - Samples with high frequency may have low opacity
 - Interesting features consist of samples with high opacity
- Importance sampling
 - Combine histogram and opacity function

Quality and Storage

- Turbine dataset
- 50 time steps
- 6 views proxy
- Budget: 50MB (per view and time step)

Image from Raw Data 271GB Image from Proxy (PSNR: 37.07) 15.3GB

Object Space Distributions Proxy

Arbitrary view exploration

- Option 1: Samples generated from the view dependent proxies can be warped to different views
- Option 2: Create object space distributions

Data Modeling – Block Histogram

Data Modeling – Block Distributions

- Block histogram or value GMM summarizes data samples in a block
 - Bin b_i represents a continuous data value range $[L_{b_i}, U_{b_i}]$
 - $H(b_i) = \frac{N(b_i)}{\sum_{k=0}^{B-1} N(b_k)}$
 - $N(b_k)$: number of grid points whose values are in range $[L_{b_k}, U_{b_k}]$

Data Modeling – Spatial Distribution

Data Modeling – Spatial Distribution

- Block histogram does not retain samples' locations
- Each bin creates a spatial distribution: { S_0, S_1, \dots, S_{B-1} }
 - S_{b_i} : maps a spatial location (ℓ) to a probability
 - how likely ℓ has a sample whose value within the range of b_i
 - Estimated by a multivariate GMM (Spatial GMM)
- Spatial GMM modeling
 - Collects coordinates of all grid points assigned to bin b_i
 - Uses EM algorithm to estimate the parameters of the GMM
 - Repeat the process for each bin

Value Estimation at a location **X**

- Spatial GMMs to model spatial probability density function for each value interval (V)
- Bayes' rule
 - The prior is adjusted by the related evidences
 - Prior P(V) : block distribution/ histogral
 - Evidences: probabilities of spatial GMMs at
 - Posterior: estimated PDF at **x**

$P(v|x) \sim P(x|v) * P(v)$

Post-Hoc Analysis Sampling-based Volume Rendering

Volume rendering from the reconstructed volume of Turbine pressure variable

• Representing the vectors in the block using Gaussian mixture model (GMM): $g(\vec{v}) = \sum_{j=1}^{K} \omega_j N(\vec{v} | \mu_j, \Sigma_j)$

• The vector transition information can also be represented by GMMs of winding angle: GMM $h(\theta) = \sum_{j=1}^{K} \omega_j N(\theta | \mu^{\theta}_{j}, \Sigma^{\theta}_{j})$

- What to do with vector GMM of vector $g(\vec{v}) = \sum_{j=1}^{K} \omega_j N(\vec{v} | \mu_j, \Sigma_j)$
 - Use Monte Carlo sampling to trace a bundle of traces
 - Use the mean vector to trace a single trace
- $g(\vec{v})$ is an unconditional distribution
- Condition of $g(\vec{v})$?
 - Have already traced the particle for k steps, by $\{\vec{v}_0, \dots, \vec{v}_{k-1}\}$
 - Conditional distribution $g(\vec{v}|\vec{v}_0, \dots, \vec{v}_{k-1})$
 - Assume a Markov model
 - Conditional distribution $g(\vec{v}|\vec{v}_{k-1})$

- Conditional distribution $g(\vec{v}|\vec{v}_{k-1})$
 - Bayes Theorem
 - $g(\vec{v}|\vec{v}_{k-1}) = \alpha * g(\vec{v}) * g(\vec{v}_{k-1}|\vec{v})$
 - Replace \vec{v}_{k-1} with its angle with $\vec{v} : \theta(\vec{v}_{k-1}, \vec{v})$
 - $g(\vec{v}|\vec{v}_{k-1}) = \alpha * g(\vec{v}) * g(\theta(\vec{v}_{k-1}, \vec{v})|\vec{v})$
- As a result

•
$$g(\vec{v}|\vec{v}_{k-1}) = \alpha *$$

 $\sum_{j=1}^{K} \left(\omega_j N\left(\theta(\vec{v}_{k-1},\mu_j)|\mu^{\theta}_{j},\Sigma^{\theta}_{j}\right) \right) N(\vec{v}|\mu_j,\Sigma_j)$

- Conditional distribution $g(\vec{v}|\vec{v}_{k-1})$
 - Unconditional $g(\vec{v}) = \sum_{j=1}^{K} \omega_j N(\vec{v} | \mu_j, \Sigma_j)$
 - Conditional $g(\vec{v}|\vec{v}_{k-1}) = \alpha * \sum_{j=1}^{K} \left(\omega_j N\left(\theta(\vec{v}_{k-1},\mu_j) \middle| \mu^{\theta}_{j}, \Sigma^{\theta}_{j}\right) \right) N(\vec{v}|\mu_j, \Sigma_j)$

Tracing Method

- Tracing with the conditional distribution $g(\vec{v}|\vec{v}_{k-1})$
 - Use Monte Carlo sampling to trace a bundle of traces sample from $g(\vec{v}|\vec{v}_{k-1})$
 - Conditional Monte Carlo (CMC)
 - Use $g(\vec{v}|\vec{v}_{k-1})$ from the second step
 - Use the mean vector to trace a single trace mean of $g(\vec{v}|\vec{v}_{k-1})$
 - Conditional Mean Vector (CMV)
 - Use $g(\vec{v}|\vec{v}_{k-1})$ from the second step
 - Use $g(\vec{v}|\vec{v}_{k-1})$ only when the mean of the winding angle distribution has an absolute value larger than a threshold

Qualitative Comparison

- Comparison Conditional Monte Carlo (CMC)
 - Reward the Gaussian component that better fits the angle pattern

Cost and Performance

- Cost of using conditional distribution
 - Extra storage:

•
$$g(\vec{v}) = \sum_{j=1}^{K} \omega_j N(\vec{v}|\mu_j, \Sigma_j)$$
, plus $h(\theta) = \sum_{j=1}^{K} \omega_j N(\theta|\mu_j^{\theta}, \Sigma_j^{\theta})$

• 33% extra storage

	Data Reduction		Single Line Tracing		Monte Carlo Tracing	
	Baseline	Our Method	Baseline	CMV	Baseline	СМС
Time (s)	73.35	76.53	0.1003	0.1080	3.307	5.480

Distributions Based Feature Tracking

Probabilistic Data Modeling

- A block-wise data modeling approach
 - Each block is represented by a mixture of Gaussians (GMM)
- Probability density of a GMM is expressed as:

$$p(X) = \sum_{i=1}^{K} \omega_i * N(X \mid \mu_i, \sigma_i)$$

Incremental Distribution Update for Time-Varying Fields

GMM before update at t = to

Distribution after update at t = t1

- Update mean and standard deviation as: $\mu_{i,t} = (1 - \beta)\mu_{i,t-1} + \beta\mu_{i,t}$ $\sigma_{i,t}^2 = (1 - \beta)\sigma_{i,t-1}^2 + \beta(\mu_{i,t} - x_{i,t})^2$
- Update weight as: $\omega_{\!_{\!\!i,t}} = (1 \beta) \omega_{\!_{\!\!i,t-1}} + \beta(I_{\!_{\!\!i,t}})$

Classification Using Foreground Detection

- A block is classified as foreground if new data
 - do not match any existing Gaussians
 - match with a newly created Gaussian

 $Possibility_{foreground,t}(b_{i,t}) = q_{i,t} / n_{i,t}$

$$\rightarrow$$

Similarity Based Classification

• Similarity of a block with the target GMM is estimated by Bhattacharya distance:

$$\psi(p,p') = \sum_{i=0}^{n} \sum_{j=0}^{m} \omega_i \omega_j' \xi(p_i,p_j')$$

Possibility_{similarity,t}
$$(b_{i,t}) = 1 - \psi_{norm}(b_{i,t}, f_t)$$

Feature-aware Classification Field

• Linear combination of foreground information and similarity measure

 $Possibility_{feature}(b_i) = \gamma * Possibility_{similarity}(b_i) + (1 - \gamma) * Possibility_{foreground}(b_i)$

Tracking in Classification Field

- Given a user specified threshold
 - Segment the data using the threshold
 - Apply Connected Component algorithm

Distribution Driven Feature Tracking

Tracking Examples

Query and Exploration of Distributions

- Provide an overview of the distribution data without sampling
- Identifying features from distributions directly
- Visualization of probability distribution fields are challenging
 - Visualizing distribution at each data point needs more screen space
 - Overall trend may not be easy to see
- Possible approaches
 - Statistical summaries (e.g. mean)
 - Dissimilarity measures

A probability distribution field

Visualizing Cumulative Probabilities

- Visualizing and analyzing distributions with cumulative probabilities over different value ranges
- The cumulative probability of a probability density function f_X(x) for random variable X over a range Γ=(a,b) is defined as

$$\Pr[a \leq X \leq b] = \int_a^b f_X(x) \, dx$$

Probability Distribution Field to Cumulative Probability Fields

- By calculating cumulative probabilities over a given value range for distributions on each grid point
 - A scalar field is generated
 - The resulting scalar field is called *range likelihood field (RLF)*

Exploring Value Ranges

- To select representative value ranges, we
 - partition the value domain into N subranges Γ_1 , Γ_2 , ..., Γ_N
 - generate N RLFs L_1 , L_2 , ..., L_N for the subranges
 - compute distances between every pair of RLFs
 - organize the value ranges and corresponding RLFs into a binary tree using hierarchical clustering

Exploring Value Ranges

- To select representative value ranges, we
 - partition the value domain into N subranges Γ_1 , Γ_2 , ..., Γ_N
 - generate N RLFs L_1 , L_2 , ..., L_N for the subranges
 - compute distances between every pair of RLFs
 - organize the value ranges and corresponding RLFs into a binary tree using hierarchical clustering

Case Study - Massachusetts Bay Sea Trial Ensemble Dataset

- The probability distribution field
 - Performing kernel density estimation for the variable chlorophyll-a concentration (CHL) on all 600 ensemble members
- The initial RLT view

Case Study - Massachusetts Bay Sea Trial Ensemble Dataset

• Visualizing user selected RLFs

Case Study - Massachusetts Bay Sea Trial Ensemble Dataset

• Visualizing and Analyzing Multiple RLFs

Additional Work

- Multivariate distribution modeling using Coupla functions (Vis 17,18)
- Pathline and data modeling for time-varying flow fields (LDAV 16)
- Efficient histogram search (EuroVis 16, Pacific Vis 17)
- Uncertainty and sensitivity simulation parameter analysis (Vis 16, 17)
- Surface density estimation (TVCG 19)
- Ensemble Data Modeling and Reconstruction (Pacific Vis 19)

Future Research Directions