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In Situ Processing and Visualization
• ExaFLOPs supercomputers is becoming a reality (exa = 

1,000,000,000,000,000,000)
• Number of cores per processor will increase
• Memory per core will decrease

• The speed and size of memory and I/O devices cannot keep pace with 
the increase of compute power
• Cost of moving data will increase 

• It will be very difficult for scientists to store and analyze even a small portion 
of their simulation output

In situ Visualization
Generating Visualization While the Simulation is Still Running 



Characteristics of In Situ Visualization
• Data are transient;  only available for a short time 
• Mainly batch mode processing;  Interactive exploration is not possible
• Need to know what is needed a priori; Salient information might not 

be found 
• Limited parameters to explore; Sophisticated visualization is not 

possible  
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In Situ Visualization Strategies 

• Generate images from preselect parameters (e.g. Catalyst, Libsim)

• Database from a large collection of images (e.g. Cinema Project)

• Visualization with explorable contents (e.g. Explorable Images)

• Feature extraction (e.g. Contour trees, flowlines) 

• Data Reduction – Compact data representation or representative 
samples or time steps (e.g. compression, key time steps)
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In Situ Visualization Software 

• Application aware vs. not 
• Tightly or loosely coupled
• Shallow or deep copy 
• Space or time share
• Data synchronization and communication

• Software control (automatic or human control)
• Proximity: Same or different machines 
• Single or multi purpose (e.g. ADIOS) APIs
• Types of output (data, images, etc) 



Distribution-based In Situ Analytics @ OSU

• Probability Distributions 
collected as in situ time 
• Block or particle based 
• Histograms, GMMs
• Multivariate 

• Distribution-based post-hoc 
analysis 
• Resampling based visualization
• Direct inference based on 

distributions 
• Interactive data queries 

Approaches

• Preserve
• Important data characteristics
• Field values and feature locations

• Allow
• Post-hoc analysis with standard 

visualization capabilities
• Quantitative analysis of quality of 

uncertainty 
• Interactive data driven queries 

• Predict
• Results of simulations with 

novel parameter 
configurations

Goals



In Situ Research @OSU

Storage
Data Summaries

Histogram Gaussian Mixture Model Gaussian

In Situ Data Reduction and Transformation 

• Distribution Modeling:  
• Spatial Partition
• Field and particle data 
• Image space (View dependent) 
• Object space
• Multivariate
• Time-varying
• Ensemble data

Post-Hoc Analysis and Visualization 

• Visualization and Analytics:  
• Sampling
• Scalar data visualization algorithms
• Vector data visualization algorithms
• Feature tracking 
• Distribution Exploration
• Distribution Search
• Ensemble data analysis 



View Dependent Distributions Proxy

• Collects samples during 
volume ray casting 
• Allows change of transfer 

functions in post-hoc 
analysis 
• Errors are constrained in 

the depth dimension 
• Warping the samples to 

different views are 
possible  

• Image space approaches have 
emerged as a promising method
• The scale of data defined in image space (~ 

106 pixels) is relatively smaller than in object 
space (~ 109~15 voxels)

• Freely explore the occluded 
features
• Existing image-based approaches have 

limited ability to explore the occluded 
features

• Inevitable data loss in the compact 
representation

Motivations Methods



View Dependent Proxy Construction
• Image-based proxy is constructed at each selected view
• Subpixel ray casting to collect samples in the pixel frustum
• Histogram is used to statistically summarize data in the pixel frustum
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One pixel frustum Subpixel ray casting

Histogram



Irregular Frustum Subdivision
• Histogram does not keep samples’ order in the pixel frustum 

• Samples‘ order is critical to provide depth cue in rendering
• A pixel frustum is sub-divided into sub-frustums which are summarized by histograms

• More sub-frustums: more accurate samples’ order and store more histograms
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One pixel frustum



Data Visualization in Post Analysis Machine
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Super Computer



Data Visualization in Post Analysis Machine
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Post Analysis Machine



Importance Sampling
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Transfer function
Curve: opacity function

Histogram

• Samples drawn from a histogram are biased towards to the 
value with high frequency 
• Samples with high frequency may have low opacity 
• Interesting features consist of samples with high opacity 

• Importance sampling
• Combine histogram and opacity function



Importance Sampling
• Samples drawn from a histogram are biased towards to the 

value with high frequency 
• Samples with high frequency may have low opacity 
• Interesting features consist of samples with high opacity

• Importance sampling
• Combine histogram and opacity function
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Transfer function
Curve: opacity function

Histogram

Opacity function

Histogram Importance distribution
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Quality and Storage
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Image from Proxy (PSNR: 37.07)
15.3GB

Image from Raw Data
271GB

• Turbine dataset

• 50 time steps

• 6 views proxy

• Budget:  50MB 
(per view and time step)



Object Space Distributions Proxy 
Arbitrary view exploration
• Option 1: Samples generated from the view dependent proxies can be 

warped to different views 

•Option 2: Create object space distributions 



Data Modeling – Block Histogram
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Data Modeling – Block Distributions
• Block histogram or value GMM summarizes data samples in a block

• Bin !" represents a continuous data value range [$%&, (%&]
• * !" = ,(%&)

∑012345 ,(%0)
• 6(!7): number of grid points whose values are in range $%0, (%0
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Data ValueData of a block



Data Modeling – Spatial Distribution
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Data Modeling – Spatial Distribution
• Block histogram does not retain samples’ locations

• Each bin creates a spatial distribution: {!", !$, … 
!%&$}
• !'( : maps a spatial location (ℓ) to a probability

• how likely ℓ has a sample whose value within the range of +,
• Estimated by a multivariate GMM (Spatial GMM)

• Spatial GMM modeling
• Collects coordinates of all grid points assigned to bin +,
• Uses EM algorithm to estimate the parameters of the 

GMM
• Repeat the process for each bin
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EM Algorithm



Value Estimation at a location X

• Spatial GMMs to model spatial  
probability density function for 
each value interval (V)  

• Bayes’ rule
• The prior is adjusted by the related 

evidences
• Prior  P(v) : block distribution/ 

histogral
• Evidences: probabilities of spatial 

GMMs at
• Posterior: estimated PDF at x

Prob.

Prob.

P(v|x ) ~  P(x|v) * P(v)



Post-Hoc Analysis
Sampling-based Volume Rendering
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Block histogram
Size: 131.4MB
Block size: 22"

Block histogram w/ 
interpolation
Size: 131.4MB
Block size: 22"

Block GMM
Size: 163.71MB
Block size: 10"

Our approach
Size: 151.54MB
Block size: 32"

Number of Gaussians: 4

Raw data
Size: 10871MB

Volume rendering from the reconstructed volume of Turbine pressure variable



Particle Tracing in Distribution Fields
• Representing the vectors in the block using Gaussian mixture model (GMM): 
! #⃗ = ∑&'() *&+(#⃗|.&, Σ&)

• The vector transition information can also be represented by GMMs of winding 
angle:  GMM ℎ(3) = ∑&'() *&+(3|.4&, Σ4&)

ᶿ
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Particle Tracing in Distribution Fields
• What to do with vector GMM of vector ! #⃗ =
∑&'() *&+(#⃗|.&, Σ&)
• Use Monte Carlo sampling to trace a bundle of traces
• Use the mean vector to trace a single trace

• ! #⃗ is an unconditional distribution

• Condition of ! #⃗ ?
• Have already traced the particle for 2 steps, by {#⃗4, … , #⃗67(}
• Conditional distribution ! #⃗|#⃗4, … , #⃗67(
• Assume a Markov model
• Conditional distribution ! #⃗|#⃗67(



Particle Tracing in Distribution Fields

• Conditional distribution ! #⃗|#⃗%&'
• Bayes Theorem 
• ! #⃗|#⃗%&' = ) ∗ ! #⃗ ∗ ! #⃗%&'|#⃗

• Replace #⃗%&' with its angle with #⃗ : +(#⃗%&', #⃗)
• ! #⃗|#⃗%&' = ) ∗ ! #⃗ ∗ ! +(#⃗%&', #⃗)|#⃗

• As a result 
• ! #⃗|#⃗%&' = ) ∗
∑01'2 304 + #⃗%&', 50 560, Σ60 4 #⃗ 50, Σ0



Particle Tracing in Distribution Fields 

• Conditional distribution ! #⃗|#⃗%&'
• Unconditional ! #⃗ = ∑*+', -*.(#⃗|0*, Σ*)
• Conditional ! #⃗|#⃗%&' = 4 ∗ ∑*+', -*. 6 #⃗%&', 0* 07*, Σ7* . #⃗ 0*, Σ*
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*+'

,
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Tracing Method

• Tracing with the conditional distribution ! #⃗|#⃗%&'
• Use Monte Carlo sampling to trace a bundle of traces – sample from 
! #⃗|#⃗%&'
• Conditional Monte Carlo (CMC)
• Use ! #⃗|#⃗%&' from the second step

• Use the mean vector to trace a single trace – mean of ! #⃗|#⃗%&'
• Conditional Mean Vector (CMV)
• Use ! #⃗|#⃗%&' from the second step
• Use ! #⃗|#⃗%&' only when the mean of the winding angle distribution 

has an absolute value larger than a threshold



Qualitative Comparison

• Comparison - Conditional Monte Carlo (CMC)
• Reward the Gaussian component that better fits the angle pattern

θ

h(θ)

θ

θ%

θ&

Baseline Monte Carlo

Conditional Monte Carlo



Cost and Performance

Data Reduction Single Line Tracing Monte Carlo Tracing

Baseline Our Method Baseline CMV Baseline CMC

Time (s) 73.35 76.53 0.1003 0.1080 3.307 5.480

• Cost of using conditional distribution
• Extra storage: 
• ! #⃗ = ∑&'() *&+(#⃗|.&, Σ&), plus ℎ(3) = ∑&'() *&+(3|.4&, Σ4&)
• 33%  extra storage



Probabilistic Data Modeling 
• A block-wise data modeling approach

• Each block is represented by a mixture of Gaussians (GMM)

• Probability density of a GMM is expressed as:

1

( ) * ( | , )
K

i i i
i

p X N Xw µ s
=

=å
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Distributions Based Feature Tracking

Incremental estimation of 
temporal data distribution

Update block distributions incrementally



Incremental Distribution Update for Time-
Varying Fields 

• Update mean and standard deviation as:

• Update weight as:

, , 1 ,(1 )i t i t i tµ b µ bµ-= - +

, , 1 ,(1 ) ( )i t i t i tIw b w b-= - +

2 2 2
, , 1 , ,(1 ) ( )i t i t i t i txs b s b µ-= - + -
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New data points observed

GMM before update at t = t0 Distribution after update at t = t1



Classification Using Foreground Detection

• A block is classified as foreground if new data
• do not match any existing Gaussians 
• match with a newly created Gaussian

, , , ,( ) /foreground t i t i t i tPossibility b q n=
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Similarity Based Classification

• Similarity of a block with the target GMM is estimated 
by Bhattacharya distance:

High similarity value

Low similarity value

Target 
distribution

, , ,( ) 1 ( , )similarity t i t norm i t tPossibility b b fy= -

/ / /
0 0

( , ) ( , )n m
i j i ji j

p p p py ww x
= =

=å å
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Feature-aware Classification Field

• Linear combination of foreground information and 
similarity measure

+=

Foreground measureSimilarity measureFinal combined field

( ) * ( ) (1 )* ( )feature i similarity i foreground iPossibility b Possibility b Possibility bg g= + -
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Tracking in Classification Field

• Given a user specified threshold
• Segment the data using the threshold
• Apply Connected Component algorithm
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Distribution Driven Feature Tracking

Extract and track features using  
classification fields

Generate classification field using 
(1) foreground information

(2) similarity measure

Incremental estimation of 
temporal data distribution

Update block distributions incrementally

Estimate 
foreground 
possibility

Estimate 
similarity 

with target

Feature –aware 
classification field+



Tracking Examples

T=10 T=20 T=40



• Provide an overview of the distribution data without sampling 
• Identifying features from distributions  directly
• Visualization of probability distribution fields are challenging

• Visualizing distribution at each data point needs more screen space 
• Overall trend may not be easy to see 

• Possible approaches
• Statistical summaries (e.g. mean)
• Dissimilarity measures
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A probability distribution field

Query and Exploration of Distributions 



Visualizing Cumulative Probabilities

• Visualizing and analyzing distributions with cumulative probabilities 
over different value ranges
• The cumulative probability of a probability density function fX(x) for 

random variable X over a range Γ=(a,b) is defined as



Probability Distribution Field to Cumulative 
Probability Fields

• By calculating cumulative probabilities over a given value range for 
distributions on each grid point
• A scalar field is generated
• The resulting scalar field is called range likelihood field (RLF)
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Exploring Value Ranges

• To select representative value ranges, we
• partition the value domain into N subranges Γ1, Γ2, …, ΓN
• generate N RLFs L1, L2, …, LN for the subranges
• compute distances between every pair of RLFs
• organize the value ranges and corresponding RLFs into a 

binary tree using hierarchical clustering



Exploring Value Ranges

• To select representative value ranges, we
• partition the value domain into N subranges Γ1, Γ2, …, ΓN
• generate N RLFs L1, L2, …, LN for the subranges
• compute distances between every pair of RLFs
• organize the value ranges and corresponding RLFs into a 

binary tree using hierarchical clustering



Case Study - Massachusetts Bay Sea Trial 
Ensemble Dataset
• The probability distribution field
• Performing kernel density estimation for the variable chlorophyll-a 

concentration (CHL) on all 600 ensemble members
• The initial RLT view
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Case Study - Massachusetts Bay Sea Trial 
Ensemble Dataset
• Visualizing user selected RLFs
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Case Study - Massachusetts Bay Sea Trial 
Ensemble Dataset
• Visualizing and Analyzing Multiple RLFs
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Additional Work

• Multivariate distribution modeling using Coupla functions (Vis 17,18)
• Pathline and data modeling for time-varying flow fields (LDAV 16)
• Efficient histogram search (EuroVis 16, Pacific Vis 17)
• Uncertainty and sensitivity simulation parameter analysis (Vis 16, 17)
• Surface density estimation (TVCG 19)
• Ensemble Data Modeling and Reconstruction (Pacific Vis 19)



Future Research Directions


