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In Situ Processing and Visualization

e ExaFLOPs supercomputers is becoming a reality (exa =
1,000,000,000,000,000,000)
* Number of cores per processor will increase
* Memory per core will decrease

* The speed and size of memory and |I/O devices cannot keep pace with
the increase of compute power
* Cost of moving data will increase

* |t will be very difficult for scientists to store and analyze even a small portion
of their simulation output

In situ Visualization
Generating Visualization While the Simulation is Still Running




Characteristics of In Situ Visualization

e Data are transient; only available for a short time
* Mainly batch mode processing; Interactive exploration is not possible

* Need to know what is needed a priori; Salient information might not
be found

* Limited parameters to explore; Sophisticated visualization is not
possible
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In Situ Visualization Strategies

* Generate images from preselect parameters (e.g. Catalyst, Libsim)
* Database from a large collection of images (e.g. Cinema Project)

* Visualization with explorable contents (e.g. Explorable Images)

* Feature extraction (e.g. Contour trees, flowlines)

* Data Reduction — Compact data representation or representative
samples or time steps (e.g. compression, key time steps)
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In Situ Visualization Software

* Application aware vs. not ”lPara View
* Tightly or loosely coupled

* Shallow or deep copy @ ParaView

e Space or time share CataIySt

e Data synchronization and communication

e Software control (automatic or human control) =
* Proximity: Same or different machines Vislt2.6 -

* Single or multi purpose (e.g. ADIOS) APIs

* Types of output (data, images, etc) AD I &S



Distribution-based In Situ Analytics @ OSU

Approaches Goals
* Probability Distributions * Preserve
collected as in situ time * Important data characteristics
« Block or particle based * Field values and feature locations
* Histograms, GMMs * Allow
e Multivariate * Post-hoc analysis with standard
visualization capabilities
* Distribution-based post-hoc e Quantitative analysis of quality of
analysis uncertainty
* Interactive data driven queries

* Resampling based visualization

* Direct inference based on * Results of simulations with

d|str|bu’F|ons _ novel parameter
* Interactive data queries configurations

e Predict



In Situ Research @OSU
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Post-Hoc Analysis and Visualization

In Situ Data Reduction and Transformation

* Visualization and Analytics:
* Sampling
e Scalar data visualization algorithms
* Vector data visualization algorithms
* Feature tracking
e Distribution Exploration
e Distribution Search
* Ensemble data analysis

e Distribution Modeling:
e Spatial Partition
* Field and particle data
* Image space (View dependent)
* Object space
* Multivariate
* Time-varying
 Ensemble data



View Dependent Distributions Proxy

Motivations Methods

* Image space approaches have
emerged as a promising method
* The scale of data defined in image space (™

* Collects samples during
volume ray casting

10° pixels) is relatively smaller than in object * Allows cha nge of transfer
space (~ 10°"* voxels) functions in post-hoc
* Freely explore the occluded analysis

features

* Existing image-based approaches have
limited ability to explore the occluded
features

e Errors are constrained in
the depth dimension

* Warping the samples to
* Inevitable data loss in the compact different views are

representation possible



View Dependent Proxy Construction

* Image-based proxy is constructed at each selected view
* Subpixel ray casting to collect samples in the pixel frustum
* Histogram is used to statistically summarize data in the pixel frustum

One pixel frustum Subpixel ray casting
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Irregular Frustum Subdivision

* Histogram does not keep samples’ order in the pixel frustum
* Samples’ order is critical to provide depth cue in rendering

* A pixel frustum is sub-divided into sub-frustums which are summarized by histograms
* More sub-frustums: more accurate samples’ order and store more histograms

One pixel frustum
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Data Visualization in Post Analysis Machine
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Data Visualization in Post Analysis Machine

Super Computer
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Importance Sampling

* Samples drawn from a histogram are biased towards to the
value with high frequency

* Samples with high frequency may have low opacity
* Interesting features consist of samples with high opacity

* Importance sampling
* Combine histogram and opacity function

Histogram

Transfer function
Curve: opacity function
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Importance Sampling

* Samples drawn from a histogram are biased towards to the
value with high frequency

» Samples with high frequency may have low opacity
* Interesting features consist of samples with high opacity

* Importance sampling
* Combine histogram and opacity function

Histogram Histogram Importance distribution

© Y 000

P(V|0) = P(o|V) * P(V)

Transfer function Opacity function
Curve: opacity function




Quality and Storage

Turbine dataset
50 time steps
6 views proxy
Budget: 50MB

(per view and time step)

Image from Raw Data
271GB

Image from Proxy (PSNR: 37.07)
15.3GB
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Object Space Distributions Proxy

Arbitrary view exploration

* Option 1: Samples generated from the view dependent proxies can be
warped to different views

*Option 2: Create object space distributions

Data Modeling

(A Local Block) Statistical Visualizations

. Value Estimation from PDFs
Partition Block Histogram Any (Bayes’ Rule)

Raw Data spatial location

(£)
Value estimation
(PDF) at location £




Data Modeling — Block Histogram

Data Modeling
(A Local Block)

Partition
Raw Data

Block Distributions

Any
spatial location

(2)
v

Value Estimation
(Bayes’ Rule)

Value estimation
(PDF) at location, £

Statistical Visualizations
from PDFs
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Data Modeling — Block Distributions
* Block histogram or value GMM summarizes data samples in a block

* Bin b; represents a continuous data value range [Ly_, Up ]

. N — _ Nb)
H(b;) Yrco N(bk)

* N(by): number of grid points whose values are in range [Lbk, Ubk]

Prob.

Data of a block Data Value

18



Data Modeling — Spatial Distribution

Data Modeling
(A Local Block)

Partition
Raw Data

Block Histogram Any
spatial location

(2)
v

Value Estimation
(Bayes’ Rule)

Value estimation
(PDF) at location, £

Statistical Visualizations
from PDFs
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Data Modeling — Spatial Distribution

* Block histogram does not retain samples’ locations

* Each bin creates a spatial distribution: {S,, 51, ...

S5p-1l
* Sp, : maps a spatial location (£) to a probability
* how likely £ has a sample whose value within the range of b;
* Estimated by a multivariate GMM (Spatial GMM)
* Spatial GMM modeling ‘ EM Algorlthm

* Collects coordinates of all grid points assigned to bin b;

e Uses EM algorithm to estimate the parameters of the
GMM

* Repeat the process for each bin

¥
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Value Estimation at a location X O D

e Spatial GMMs to model spatial ~ *
probability density function for Pv | X )"~ Plx | v) * P(v)
each value interval (V)

Prob.

e Bayes’ rule

* The prior is adjusted by the related
evidences

* Prior P(V): block distribution/

histogral @)
* Evidences: probabilities of spatial
GMMs at
* Posterior: estimated PDF at x Prob_\ £
l VI




Post-Hoc Analysis

Raw data Block histogram Block histogram w/ Block GMM Our approach
Size: 10871MB Size: 131.4MB interpolation Size: 163.71MB Size: 151.54MB
Block size: 223 Size: 131.4MB Block size: 103 Block size: 323

Block size: 223 Number of Gaussians: 4

Volume rendering from the reconstructed volume of Turbine pressure variable
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Particle Tracing in Distribution Fields

* Representing the vectors in the block using Gaussian mixture model (GMM):
g@) = X5 wiN@|uj, %))

* The vector transition information can also be represented by GMMs of winding
angle: GMM h(6) = Xj_; w;N(O|u® ,Z%))

________________




Particle Tracing in Distribution Fields

. What to do with vector GMM of vector g(v) =
] 1 ]N(vlnujlz)

e Use Monte Carlo sampling to trace a bundle of traces
e Use the mean vector to trace a single trace

 g(v) is an unconditional distribution

* Condition of g(v)?
* Have already traced the particle for k steps, by {vy, ..., Vx—1}
« Conditional distribution g(v|y, ..., Vk—1)
e Assume a Markov model
* Conditional distribution g(¥|V,_q1)




Particle Tracing in Distribution Fields

e Conditional distribution g(v|v;_4)
* Bayes Theorem
* g(V|Vk_1) = a x g(0) * g(Wy_1|V)
* Replace vj,_, with its angle with v : 0 (Vj,_4, V)
* gW|Vk—1) = a* g¥) * g(0(Vg_1,V)|V)

* As a result
* g(5|5k—1) = a*
S5 (@ (0s )| 2) ) N (3l 35)



Particle Tracing in Distribution Fields

* Conditional distribution g(v|vy_1)
» Unconditional g(v) = Zﬁ'{=1 wiN@|u;, %)

 Conditional g(¥|vy_1) = a * Z§'<=1 (a)jN (9(17k—1,#j)‘ﬂej;29j)> N(5|/v‘j» z:j)
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Tracing Method

* Tracing with the conditional distribution g(vV|vs_1)
* Use Monte Carlo sampling to trace a bundle of traces — sample from
g(|Vg_1)

e Conditional Monte Carlo (CMC)
* Use g(V|V)_1) from the second step

* Use the mean vector to trace a single trace — mean of g(¥|V_1)
e Conditional Mean Vector (CMV)
* Use g(V|Uy_1) from the second step

* Use g(V|Vk_1) only when the mean of the winding angle distribution
has an absolute value larger than a threshold



Qualitative Comparison

e Comparison - Conditional Monte Carlo (CMC)
* Reward the Gaussian component that better fits the angle pattern

BaS;l}'né Monte Carlo

@ 7
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Conditionarl Monte Carlo




Cost and Performance

* Cost of using conditional distribution
* Extra storage:

+ g(0) = i wN(@|uj, 2p), plus h(0) = Xj_; w;N(6|u® ,Z%))

* 33% extra storage

Data Reduction Single Line Tracing Monte Carlo Tracing

Baseline Our Method | Baseline CcMmV Baseline CMC

Time (s) 73.35 76.53 0.1003 0.1080 3.307 5.480




Distributions Based Feature Tracking

Probabilistic Data Modeling

* A block-wise data modeling approach
e Each block is represented by a mixture of Gaussians (GMM)

* Probability density of a GMM is expressed as:

K
p(X)=2 & *N(X | u,0)
i=l1

_________________________________________________________

Incremental estimation of M
temporal data distribution | 3 :

e o o s s s o E——

_________________________________________________________



Incremental Distribution Update for Time-

Varying Fields

GMM before update at t = to Distribution after update att = t1

 Update mean and standard deviation as:

- (1 - /H ) Hi +18:ui,t
(1 ﬂ) lt T IB(lui,t B xi,z)2

e Update welght as:

=(=Pa,,+ ()



Classification Using Foreground Detection

* A block is classified as foreground if new data

* do not match any existing Gaussians
* match with a newly created Gaussian

POSSibililyforeground,t (bi,l‘) - qi,f /niaf

OIC'DlDIO

A*/k AA*L




Similarity Based Classification

 Similarity of a block with the target GMM is estimated
by Bhattacharya distance:

v(p.p)=) 2 208(P,P)
P OSSlbllllyszmzlarnyt( ) l//norm( zt’f )

High similarity value

Target / y © -
distribution | || I
_ _\ ——>  Low similarity value



Feature-aware Classification Field

* Linear combination of foreground information and
similarity measure

POSSibililyfwm( )= y*PosszbllzlySlml,W( )+ (1—7/)*POSSibililyforegmnd(bi)

Similarity measure

4 0 = '@ + ,’ ¢
.
{70 LR
Final combined field  Similarity measure Foreground measure
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Tracking in Classification Field

* Given a user specified threshold
* Segment the data using the threshold
* Apply Connected Component algorithm

el —
s 08 O
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Distribution Driven Feature Tracking

( , \
. I
! Incremental estimation of A |
. temporal data distribution A — \ —> l
I / b . I
e 1
' Update block distributions incrementally /
P e L e e e e B e e e e T e e e e e e T e e R
\
.’ . . |
| Generate classification field using Estimate + Estimate s | Feature-aware |!
I (1) foreground information foreg-ro.u.nd s!mllarlty classification field |1
I\ (2) S|m||ar|ty measure pOSSIbI|Ity with target I
.o e e L L e /
" A
I _ I
I Extract and track features using I
: classification fields :
I I
\ /
N o e e o e o o o e e o e e En e e e e En e EEm mme mmm Eme Emm Emm M mm mm mmm mmm mmm Emm M mmm mmm S Emm M mmm mmm e mmm e s -
Vorticity Scalar Vorticity Scalar Possibility Possibility Possibility
288 T8 10 i R 50 w0204 06 0 w2 D D0 | — PO PN RV 14

2 4 6 8 10 12 14 16




Tracking Examples

Possibilty
02 . 04 06 08
o e—

Possibility
0.2 04 0.6

0.8

Possibility
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T=40

Vorticity Scalar
7.009e-03 25 5 75 10 1.214e+01

Lambda?2
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Query and Exploration of Distributions

* Provide an overview of the distribution data without sampling
* |dentifying features from distributions directly

* Visualization of probability distribution fields are challenging
* Visualizing distribution at each data point needs more screen space
e Overall trend may not be easy to see A

A
AL

AL

* Possible approaches
 Statistical summaries (e.g. mean)
* Dissimilarity measures

S e |2

A probability distribution field




Visualizing Cumulative Probabilities

* Visualizing and analyzing distributions with cumulative probabilities
over different value ranges

* The cumulative probability of a probability density function f,(x) for
random variable X over a range I'=(a,b) is defined as

Pria < X < b = /be(a:)da:

I
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Probability Distribution Field to Cumulative
Probability Fields

* By calculating cumulative probabilities over a given value range for
distributions on each grid point
e A scalar field is generated
* The resulting scalar field is called range likelihood field (RLF)
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Exploring Value Ranges

* To select representative value ranges, we
* partition the value domain into N subranges ', I, ..., 'y
* generate N RLFs L,, L,, ..., Ly for the subranges
e compute distances between every pair of RLFs

e organize the value ranges and corresponding RLFs into a
binary tree using hierarchical clustering

I Ti Ty Ly
o L 1 1 1
Y4V :_/\ L,
Probability Range Likelihood Dissimilarity Matrix Hierarchical

Distribution Field Fields Clustering Tree



Exploring Value Ranges

* To select representative value ranges, we
* partition the value domain into N subranges ', I, ..., 'y
* generate N RLFs L, L,, ..., Ly for the subranges
e compute distances between every pair of RLFs

* organize the value ranges and corresponding RLFs into a
binary tree using hierarchical clustering

0.75 -0.01

0.74

0.56
z0
9S°0

0.4 0.37

0.38



Case Study - Massachusetts Bay Sea Trial
Ensemble Dataset

* The probability distribution field

* Performing kernel density estimation for the variable chlorophyll-a

concentration (CHL) on all 600 ensemble members
5.0 0.0

e The initial RLT view
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Massachusetts Bay Sea Trial
ted RLFs

Ensemble Dataset
* Visualizing user selec
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Case Study - Massachusetts Bay Sea Trial
Ensemble Dataset

r————_————_———_———————————
0.02 0.27 |

* Visualizing and Analyzing Multiple RLFs




Additional Work

e Multivariate distribution modeling using Coupla functions (Vis 17,18)
 Pathline and data modeling for time-varying flow fields (LDAV 16)

e Efficient histogram search (EuroVis 16, Pacific Vis 17)

* Uncertainty and sensitivity simulation parameter analysis (Vis 16, 17)
 Surface density estimation (TVCG 19)

* Ensemble Data Modeling and Reconstruction (Pacific Vis 19)



Future Research Directions



