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ABSTRACT

Cosmologists build simulations for the evolution of the universe
using different initial parameters. By exploring the datasets from
different simulation runs, cosmologists can understand the evolution
of our universe and approach its initial conditions. A cosmological
simulation nowadays can generate datasets on the order of petabytes.
Moving datasets from the supercomputers to post data analysis ma-
chines is infeasible. We propose a novel approach called statistical
super-resolution to tackle the big data problem for cosmological data
analysis and visualization. It uses datasets from a few simulation
runs to create a prior knowledge, which captures the relation between
low- and high-resolution data. We apply in situ statistical down-
sampling to datasets generated from simulation runs to minimize
the requirements of I/O bandwidth and storage. High-resolution
datasets are reconstructed from the statistical down-sampled data by
using the prior knowledge for scientists to perform advanced data
analysis and render high-quality visualizations.

1 INTRODUCTION

Exploring and modeling parameters of the initial conditions of our
universe is one of the most important tasks in cosmology, which
can help cosmologists to build more precise universe models [3, 7].
Recently, a cosmological simulation code called Nyx, developed by
Lawrence Berkeley National Laboratory, is used for simulating large-
scale cosmological phenomena [3]. It requires performing many cos-
mological simulations to conduct a large-scale, multi-dimensional
parameter study to find the “best matching” set of parameters that
matches the current state of the observable universe. In addition,
every cosmological simulation output is ‘scientifically rich’ [27].
Cosmologists may discover new insights into the physical model by
interactively exploring and analyzing the datasets [13]. When the
size of parameter study is small, the data analysis pipeline consists
of running the simulation with different parameter inputs, writing
the output to disk, and repeatedly loading the data from disk to
visualize and analyze the datasets. To compare ensemble simulation
runs with observations and understand the evolution of the universe,
it requires high-resolution simulations to match the desired accu-
racy. This easily produces datasets at the order of petabytes, and
the traditional data analysis pipeline becomes infeasible because of
disk bandwidth constraints and limited capacity of storage devices.
Disk bandwidth constraints result in longer I/O time. Also, only a
portion of the output can be kept in disk due to the limited capacity
of disks. Therefore, it is essential to develop an approach to improve
the whole cosmological data analysis pipeline.

To tackle such large-scale data problem, the concept of in situ
data processing has been proposed. In situ techniques use super-
computer resources to generate compact data representations for
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analysis without moving the raw datasets. A naive approach is to
down-sample the datasets, but the quality of this data representation
would be insufficient for many data analysis tasks [28]. Statistically
modeling the datasets can quantify the error of the down-sampled
datasets, but the quality of the data representation is not improved
significantly [10, 20]. Wang et al. [33] and Soumya et al. [12] pro-
pose accurate and compact data representations, but they need a
long data processing time. Other in situ techniques produce the data
representations for specific data analysis or visualization require-
ments [1, 13, 34].

The goal of this work is to develop an efficient technique
which can compactly represent multi-variate (quantity) cosmologi-
cal datasets and used for various data analysis and visualization
tasks. We propose an in situ technique called statistical-based
super-resolution (SbSR) for cosmological simulations. In com-
puter vision and image processing community, the super-resolution
technique [18, 36] enhances the resolution of an image using a
prior knowledge database to predict high-resolution images from
low-resolution images. Prior knowledge in our statistical-based
super-resolution is created by the raw data from a small portion of
simulation runs and used to reconstruct down-sampled data with
other simulation parameters. The down-sampling is accomplished
in situ by a Gaussian Mixture Model (GMM). We use GMMs to
compactly represent low-resolution cosmology data, because data
values of some quantities (e.g., density), from different cosmological
simulation runs, can spread in an extremely wide value range, and a
3D down-sampled region can contain a large number of data values.
Distributions provide richer information to facilitate the process
of high-resolution data reconstruction. To minimize computation
time for in situ statistical down-sampling, a parallel Expectation-
Maximization (EM) algorithm based on the VTK-m framework [25]
is implemented to train multiple GMMs concurrently by utilizing
either GPU or multi-threads CPU. We show that our in situ statistical
down-sampling can significantly reduce data storage and does not
increase the total simulation time.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 is an overview of our approach.
Section 4 describes the in situ statistical down-sampling. The prior
knowledge creation is introduced in Section 5. Section 6 presents
the process to reconstruct statistical down-sampled data to high-
resolution data. Section 7 shows the quantitative and qualitative
evaluations. Section 8 is the discussion of our approach. Finally,
Section 9 concludes the paper and provides future work.

2 RELATED WORK

Data representation for large datasets: Data representation plays
an important role in large data analysis to reduce the memory foot-
print and save the I/O time. A traditional and straightforward ap-
proach of reducing the size of volume data is to down-sample the
volume to a smaller resolution. However, this approach suffers from
aliasing and inconsistent artifacts, as pointed out in [20, 28, 37]. Tra-
ditional statistical data reduction approaches, such as curve fitting,
or PCA, may also suffer from inconsistent artifacts if a higher data
reduction rate is required. The compression technique is the most
popular technique to reduce the I/O overhead [5, 15, 21]. In the past
decade, more sophisticated lossy compression techniques for scien-



tific data analysis are developed studied in this paper. ISABELA [17]
and SZ [8, 29] are two popular lossy compression techniques. Both
of them model the data points in local regions by fitting curves. Be-
cause data values in most of the scientific data are changed smoothly
in the local region, storing a few parameters of the model are often
sufficient to represent the data well. However, a large error may be
introduced if the dataset has an extreme value ranges with a high
compression rate. Statistical summarization preserves distribution
data for reconstruction. Dutta et al. [12] irregularly subdivided a
volume by minimizing the data distribution entropy in each sub-
region to both reduce the proxy size and preserve the representation
quality. However, their in situ data processing of one time step is
much longer than the raw data I/O time for one time step. Wang et
al. [33] used spatial distribution to improve the representation quality
of statistical data summarization. However, they require around 1
hour to process a volume which contains only 2.5 million points
because they need to estimate parameters from many multi-variate
GMMs. Wei et al. [35] used stratified sampling to preserve both
data distribution of each low-resolution block and samples’ location
distribution in the spatial domain for the accurate data reconstruction.
Hazarika et al. [16] proposed a flexible distribution driven analysis
framework, called CoDDA, targeted at in situ modeling of multi-
variate data. They used copula functions to model the correlation
among multiple physical and spatial variables in their framework.
The simulations which generate time-varying datasets can easily
have hundreds or thousands of time steps, and simply create a huge
amount of data. Chen et al. [6] used a quadratic Bezier curve to
calculate the vector between two sampled time steps and compute
the reliable pathlines. Gau et al. [14] used temporal coherence to
increase rendering performance. In addition, the state-of-the-art
data reduction techniques for scientific data visualization and anal-
ysis are summarized by Meyer et al. [24] and Li et al. [19]. The
survey papers discussed and categorized the approaches in term of
different use cases and techniques. Wang et al. [32] surveyed works
related to scientific ensemble datasets, which includes data reduction
techniques for ensemble datasets.

In situ technique: In situ workflows tackle the constraint of the
I/O bandwidth and disk capacity, by processing the datasets to pro-
duce compact data proxies using the same supercomputer resources.
Ma et al. [22] pointed out the challenges of in situ and discussed the
future directions of in situ applications. Tikhnova et al. [30, 31] pro-
posed image-based in situ techniques which allow users to change
the transfer function and explore volume datasets by storing a small
number of image slices used to approximate pixel color. Ahrens
et al. [1, 2, 26] proposed an image-based approach which directly
renders a set of images in the supercomputer to reduce the data
movement. Scientists can interactively explore the dataset via these
images. Wang et al [34] used distribution to compactly model data
projected to each image pixel to support volume rendering with trans-
fer function exploration and error quantification. These approaches
were targeted on data analysis tasks by volume rendering and may
not available on other data analysis tool. Dutta et al. [10] modeled
the dataset from a jet engine simulation by a set of Gaussian Mixture
Model to reduce the data size and visualize the jet engine behavior
by these GMMs only. Dutta et al. [11] proposed a prediction driven
approach to the same application. It requires a small number of
training set from the domain expert to train the model for the jet
engine stall prediction. The model is used to predict the region of
the jet engine stall and they only output the data around the stall
region to persistent disk for analysis. Recently, the community starts
to compare and integrate in situ and in-transit approaches. In-transit
technique tries to tackle the same problem. In-transit technique
could have better performance than in situ technique, but needs
more invasive modification in simulation code. Bennett et al. [4]
proposed an hybrid approach which combines in situ and in-transit
workflows to enable the analysis on multiple scientific applications.

Friesen et al. [13] compared in situ and in-transit workflows by using
two popular analysis scenarios on cosmological simulation.

3 OVERVIEW

The Nyx cosmological simulation [3] solves compressible hydrody-
namics with an N-body treatment of the dark matter. The simulation
can have up to 10 different simulation input parameters. Fixing
the values for these simulation input parameters will produce one
simulation run. In each simulation run, Nyx produces both derived
quantities volumes and particle data. In this work, we focus on
data analysis of the derived quantities. Nyx can output up to seven
derived quantities, density, xmom, ymom, zmom, Temp, rho e and
phi grav. Each quantity is a regular grid and can have up to 40963

grid points according to the settings of the simulation. Nyx produces
hundreds of time steps in each simulation run. The number of time
steps varies according to the converging speed of the simulation run.
Therefore, if the domain experts have P simulation input parameters
of interest to study, have Q quantities of interest to study, take I
value samples on each input parameter, set the output resolution of
each quantity of interest to R3 and each simulation run has T time
steps, the scale of raw data size will be O(IP ∗ T ∗Q ∗R3). This
raw data size usually is hundreds of TBs to several PBs. To output
such huge datasets to disks and access these datasets in a post data
analysis pipeline is challenging. We propose an in situ statistical
super-resolution to address this challenge.

Figure 1: We illustrate the overview of the workflow of our proposed
technique.

Figure 1 shows the workflow of our method for a single time step
and a single quantity of Nyx. The leftmost circles in Figure 1 are
simulation parameter inputs and each one is fed to Nyx to perform
one simulation run. Our technique uses latin hypercube sampling [9]
to draw a small number of simulation parameter inputs to run the
simulation (blue arrows). These simulation runs will write the full
resolution data to storages. These full resolution datasets are used
to compute the prior knowledge. For other simulation parameter
inputs (e.g. brown circles), we perform statistical down-sampling in
situ to reduce the datasets generated from the simulation. A local
data block size, B, is pre-set by users and a point (`p) in the low-
resolution space is created from a B3 data block (hp) in the raw
(high) resolution. When performing post data analysis, our approach
uses the information from the prior knowledge to reconstruct the
statistical down-sampled data to high-resolution data. We create
independent prior knowledge for each quantity of interest. Because
Nyx produces multiple time step data and the data has coherence in
the temporal domain, we create the prior knowledge only at every
τ time steps. Figure 2 illustrates this scheme. When reconstructing
the statistically down-sampled data at time step t (red dot in Figure
2) to high resolution, the closest prior knowledge in the temporal
domain is used.

4 In situ STATISTICAL DOWN-SAMPLING

A way to reduce the size of any dataset is to down-sample the data
and store it at a lower resolution. The down-sampling process usu-



Figure 2: We display the overview of prior knowledge creation and
usage in the temporal domain.

ally applies a filter to each spatial local region to calculate one value,
such as an average value, to represent the region. Although this
approach can effectively reduce the data size without complicated
computation, only limited information is kept in the low-resolution
proxy and it introduces error in the post analysis. For example, the
minimum and maximum data values in some local data blocks of the
density quantity can have a difference on the 1012 scale. The average
value will introduce severe bias in the data analysis. Therefore, in-
stead of using one value to represent the data in a spatial local block,
we suggest a statistical approach to down-sample the dataset. The
data in a local block is summarized by a distribution. Distributions
can keep abundant information, such as the occurrence probabilities
of values and statistical characteristics in the data block, to have the
potential to better reconstruct data back to high resolution.

4.1 Gaussian Mixture Model
To compactly store a local data block and model the wide data value
range in cosmological datasets, we adopt the Gaussian Mixture
Model (GMM) to represent the distribution. GMM is a popular
parametric distribution model which consists of multiple weighted
Gaussian distributions. The unique statistical properties of Gaussian
distribution allow GMM to model arbitrary distribution shape in
a compact and flexible fashion. The proposed statistical down-
sampling method uses GMM described in Equation 1 to model and
store the samples in a high-resolution data block (hp) corresponding
to a low-resolution point (`p). Figure 3 illustrates an example of
statistical down-sampling a volume of a quantity.

gp(x) =
K

∑
i=0

wi ∗ (x|µi,σi) (1)

where gp(x) is a probability density function which is represented
by a GMM. K is the number of Gaussian components. wi, µi and
σi are the weight, mean and standard deviation of the ith Gaussian
component, respectively. The sum of the weights, ∑

K
i=0 wi, in a

GMM must be 1. After statistical down-sampling, all local data
blocks, from every quantity of interest and time step, are represented
by independent GMMs.

Figure 3: We illustrate the statistically down-sampling of a raw
volume to 23 low-resolution grids. The orange block is a local data
block. The orange point is a down-sampled point represented by a
GMM which is computed from the orange block, and a minimum
and a maximum value of the orange block.

4.2 In situ Workflow

To implement the statistical down-sampling for Nyx, we append
an in situ call at the end of each time step. The in situ processing
collects all data of all quantities of interest which reside in the
same computing node to perform the statistical down-sampling.
Our statistical down-sampling has to compute the GMM, minimum
value, and maximum value for each local data block. Minimum
and maximum values are used to filter out the values that are out of
the value range when reconstructing the down-sampled data to high
resolution. Expectation-Maximization (EM) algorithm is used to
estimate the weights, means, and standard deviations of a GMM. The
EM algorithm is an iterative method which adjusts the parameters of
GMM to maximize the likelihood of input data values. To minimize
the time for GMM modeling, we implement a data parallel EM
algorithm based on the VTK-m framework [25]. The algorithm
takes data from all data blocks of all quantities from one time step
on one computing node to estimate the parameters of all GMMs in
parallel, which can fully utilize the computational resource on the
computing node. In addition, our system allows users to flexibly
control the time of in situ call by sub-sampling partial data to run
the EM algorithm.

5 PRIOR KNOWLEDGE

To reconstruct a down-sampled point back to a high-resolution data
block, the data values can be obtained by re-sampling from the
GMM. However, the data values lack the spatial location informa-
tion to allocate them in space. Without predicting the spatial location
for the re-sampled data values, the reconstruction quality will be
poor. To address this, we propose prior knowledge to predict the
location of the re-sampled data values from a GMM. The prior
knowledge is computed from the raw data of a small number of
simulation runs. We call these simulation runs prior simulation runs.
The data generated by different parameter inputs have a correlation,
and by creating the prior knowledge from the prior simulation runs,
they are used to compensate the lack of the location information. The
prior knowledge consists of two parts. One is the spatial information
dictionary and the other one is a feature matching metric. The spatial
information dictionary is a mapping between feature vectors to loca-
tion information, and is used to assign each data value from a GMM
to a position of high-resolution data. A feature vector is a descriptor
of a given data block and computed from the statistical moments of
the local neighboring data blocks. Figure 4 gives an overview of the
spatial information dictionary. A feature matching metric defines a
distance space to match a feature vector for a down-sampled point to
a feature vector in the spatial information dictionary to access proper
location information for high-resolution data reconstruction. This
section introduces the details of the spatial information dictionary
and the feature matching metric.

5.1 Spatial Information Dictionary

The spatial information dictionary maps feature vectors to spatial
location information. Each entry in the dictionary is computed from
a B3 data block of the raw data from the prior simulation runs, where
B is pre-defined down-sampled block size. A feature vector consists
of the statistical moments from itself and those of the neighboring
data blocks. We use the means and standard deviations from the
data blocks to build the feature vector. This is illustrated in Figure
4. The feature vector is normalized by the minimum and maximum
mean values in the vector to capture the relative trend of data values
in neighboring regions. Equation 2 shows a feature vector of a data
block, hp.

f Ω
hp

=
[µ∆0 µ∆1 ... µ∆n−1 σ∆0 σ∆1 ... σ∆n−1 ]

Max([µ∆0 ... µ∆n−1 ])−Min([µ∆0 ... µ∆n−1 ])
(2)



where f Ω
hp

is the feature vector of data block hp. Ω =

{∆0,∆1, ...,∆n−1} defines n functions to locate the neighboring data
blocks, which also includes hp itself. The numerator is a vector, and
µ∆i and σ∆i are the mean and standard deviation calculated from data
block h∆i(p). If a high resolution data block h∆i(p) is out of the global
spatial domain of the dataset, we pad the outside region to zero to
calculate the mean and standard deviation. Max([µ0 ... µn−1]) and
Min([µ0 ... µn−1]) are the maximum and minimum mean values,
respectively. Since the neighbor locality function Ω is predefined,
we use fhp , ignoring Ω, to indicate the feature vector of hp in the
rest of this paper.

Due to the spatial, temporal and parameter correlation between
simulation runs, if the distributions of the data values in neighboring
data blocks are similar, the locations for data values in the center
data block are likely to be similar, too. For example, the locations of
the largest values are similar in the local block. When reconstructing
a down-sampled point back to high resolution, the re-sampled data
will be assigned to space by using the location distribution of data
values in the data block, whose feature vector is most similar to
the feature vector of the down-sampled point. For example, the
largest/smallest value among the re-sampled data will be assigned
to the location which has the largest/smallest value in the data block.
The detail of computing the feature vector from the down-sampled
data is introduced in Section 6.

The distribution of data sample locations for each data block in
the prior simulation runs is retrieved from the data block then stored
as the location information in the dictionary. The location informa-
tion (shp ) in the dictionary is represented by a sequence of location
indexes. The sequence is sorted according to the corresponding data
values and only the location indexes are stored in the dictionary
without the data values. We convert the 3D location index to 1D,
and this usually requires less than 2 bytes to save a location index in
a local data block. Essentially, the stored location information is a
function which maps the samples’ order defined by samples’ value
among a group of samples to location indexes in the high-resolution
domain. By giving a group of re-sampled data values and calculating
the order of data values, shp , we can map data values to locations
in high-resolution space. Figure 4 illustrates the spatial information
dictionary creation.

Figure 4: We illustrate a 2D example of creating an item, f1 and s1
in the spatial information dictionary from the dark orange point in
low-resolution space. The orange points are the neighboring points,
and the orange blocks in high-resolution data are the corresponding
neighboring data blocks. The mean and standard deviations are
directly computed from the data in these data blocks to generate f1.
The location information s1 is extracted from the dark orange data
block.

5.2 Feature Matching Metric
To recover low-resolution GMM point to high resolution, we need
to find a matching feature vector in the dictionary to get the location
information. This requires a feature matching metric to define a
distance space between feature vectors of the point in the dictio-
nary such that corresponding location information of a feature in

the dictionary is more likely to better reconstruct a down-sampled
grid point to a high resolution. The distance metric, D( fhi , fh j ), is
constructed from prior simulation runs to create a distance space
which separates feature vectors if the location information retrieved
from the corresponding data blocks of a feature vector does not
well reconstruct the disorder data samples collected from the other
one. For example, Uhi and Uh j are data samples’ collected from data
blocks hi and h j . Locations of data samples are unknown in Uhi and

Uh j . rh j
hi

is a reconstructed block by combining samples from Uhi

and the location information (sh j ) which is retrieved from h j and

rhi
h j

is a reconstructed block by combining samples from Uh j and the
location information (shi ) which is retrieved from hi. We call the

reconstruction error of rh j
hi

and rhi
h j

the cross reconstruction error of
hi and h j. D( fhi , fh j ) should approximate the cross reconstruction
error of hi and h j. The cross error between hi and h j is shown in
Equation 3.

CE(hi,h j) =
NR(hi,r

h j
hi
)+NR(h j,r

hi
h j
)

2
(3)

where NR(h,r) is the function to compute normalized RMSE be-
tween the raw and reconstructed data. The detail is shown in Equa-
tion 4.

NR(h,r) =

√
E2(h,r)

Max(h)−Min(h)
(4)

where h is a true data block and r is a reconstructed data block
in high resolution. Max(h) and Min(h) calculate the maximum
and minimum values in h. E2(h,r) calculates the average of the
square differences of all data values at the same location. The
fundamental form of distance between two feature vectors in our
system is Mahalanobis distance [23] and Equation 5 shows the
Mahalanobis distance.

D( fhi , fh j ) =
√

( fhi − fh j )∗S−1 ∗ ( fhi − fh j ) (5)

where fhi and fh j are two feature vectors, and S is a covariance ma-
trix. The distance between two feature vectors defined by Equation
5 should approximate the cross reconstruction error of the corre-
sponding data blocks. This approximation is achieved by finding a
proper covariance matrix S which transforms the feature distance
space to approximate the cross reconstruction error space. This trans-
formation is built from data blocks collected from prior simulation
runs. Equation 6 shows the cost function to be optimized for the
covariance matrix calculation.

argmin
S

=
N−1

∑
i=0

N−1

∑
j=i

(D( fhi , fh j )−CE(hi,h j))
2 (6)

where N is the total number of data blocks collected from data of
prior simulation runs. The covariance matrix is stored and used to
reconstruct high-resolution data.

5.3 Data Collection for Prior Knowledge Creation
The prior knowledge is created from the prior simulation runs. To
collect data which has good coverage and variation in the parameter
space, we use Latin hypercube sampling [9] to sample the param-
eters and run the simulation to create the prior knowledge. Latin
hypercube sampling is often used by domain experts to sample sim-
ulation parameters to run a few simulation runs for data analysis,
when they cannot output and store results from many simulation
runs. The Latin hypercube sampling is similar to the problem of
having n rooks (towers) on a high-dimensional chess board without
threatening each other. Figure 5 gives a 2D example.



When generating data for the prior knowledge creation, the simu-
lation outputs the data at every τ timesteps instead of every time step.
Due to data coherence in the temporal domain, the prior knowledge
created at a time step can be used to reconstruct data at neighbor-
ing time steps. This also reduces the I/O of the prior simulation
runs, prior knowledge size, and creation time. To create the prior
knowledge, every raw volume of any quantity of interest and any
output time step is subdivided into several spatial sub-blocks, called
prior knowledge blocks, and each one creates independent prior
knowledge. Due to the data coherence in the local spatial domain,
mixing data from the whole spatial domain to create a single prior
knowledge is not desirable and could lower the quality of the prior
knowledge. Note that a prior knowledge block is different from a
local data block (hp) which is represented by a GMM. The whole
data spatial domain contains multiple prior knowledge blocks and
each prior knowledge block contains multiple local data blocks. For
example, if the data spatial domain is divided into L prior knowledge
blocks, a domain expert has Q quantities of interest, and T ′ is the
output time steps, our system will create (L ∗Q∗T ′) independent
prior knowledges. Figure 5 shows the prior knowledge creation
workflow.

Figure 5: We illustrate prior knowledge creation workflow. The
chess board at the left upper corner is a 2D example of the simulation
parameter input space. The green squares are the result of the Latin
hypercube sampling. We illustrate one sampled parameter, which is
the input to Nyx, and one time step (t ′) output, for prior knowledge
creation here. The white cubes at the bottom are the output volumes
of quantities of interest at time step t ′. The blue divisions illustrate
the defined prior knowledge blocks. The orange block illustrates
using a sliding block to extract sample instances creating one prior
knowledge block.

To collect the data for prior knowledge creation, we use a “slid-
ing block” with size B3 to collect sample instances from the prior
simulation runs, where B3 is the predefined down-sampled block
size. The sample instances are examined to only keep one instance
to represent multiple similar sample instances across multiple prior
simulation runs. The similarity is defined by the cross-error of Equa-
tion 3. This preprocess simplifies the prior knowledge creation and
makes the data reconstruction process in Section 6 more efficient,
because it shrinks the size of spatial information dictionary.

6 STATISTICAL SUPER-RESOLUTION

After creating the prior knowledge from a few simulation runs, re-
maining simulation runs in the parameter space can be performed
with in situ statistical down-sampling and later reconstructed with
prior knowledge. Only the compact statistical down-sampled data
are saved to disk. This does not only reduce the I/O time when writ-
ing data from supercomputers and loading data to the post-analysis
machine, but also can keep output of more simulation runs on disk

for later cosmological data analysis. This section will introduce
reconstructing the statistical down-sampled data to high resolution.
The step of up-sampling the low-resolution data to high resolution
consists of (1) re-sampling data values from GMMs (2) creating
the feature vectors from statistical down-sampled data and finding
the best matching location information in prior knowledge, and (3)
using the re-sampled data and the location information to reconstruct
the high resolution data.

6.1 GMM Data Re-sampling

Each point in low resolution is represented by a GMM, and the
GMM is computed from the data values within a B3 data block in
high resolution. The data values in a high-resolution data block can
be reconstructed by drawing B3 data values from the GMM. The
procedure to draw a sample from a GMM has two steps. The first
step is to select a Gaussian component from the GMM according
to the weight associated with each Gaussian component. The sec-
ond step is to draw a value from the selected Gaussian distribution.
By repeating the sampling step B3 times, the data values in the
high-resolution block are reconstructed. In addition, the domain
of a Gaussian distribution is defined in an infinite value space, so
unnecessary values, though associated with extremely small prob-
ability in the Gaussian distribution, still have chances to be drawn.
To avoid drawing these unnecessary values, we only accept values
that are within 3 standard deviations of the mean, and between the
stored minimum and maximum values of the data block. Otherwise,
the sample is rejected and re-drawn from the Gaussian distribution.
These re-sampling values do not have the location information to
allocate them in the high-resolution spatial space yet.

6.2 Location Information Query

To query location information for the reconstruction of a low-
resolution point, the first step is to compute the feature vector of
the point. In Section 5.1, we introduced that the feature vector of a
high-resolution data block consists of means and standard deviations
of itself and those of the neighboring data blocks. In contrast to
the spatial information dictionary creation in Section 5.1, the high-
resolution data blocks are not available here. Therefore, we have to
derive means and standard deviations from GMMs. Equation 7 and
8 show the mean and standard deviation calculation of a GMM.

µgp =
K−1

∑
k=0

(wi ∗µi) (7)

σgp =

√√√√K−1

∑
k=0

(wi ∗µ2
i )+

K−1

∑
k=0

(wi ∗σ2
i )−µ2

gp
(8)

where µgp and σgp are the mean and standard deviation of the GMM,
gp, at a low resolution point p. K is the number of Gaussian compo-
nents of gp. wi, µi and σi are the ith weight, mean and covariance
matrix of gp, respectively. After computing the mean and standard
deviation of a GMM, the feature vector of a point can be computed
by Equation 2. If the feature vector computation requests the mean
and standard deviation from a point that is out of the data spatial
domain, the mean and standard deviation are set to 0.

To query the location information for reconstruction of a low-
resolution point with quantity q at time step t, we first look up the
prior knowledge whose block spatial domain contains the point, and
time step is the closest to t and quantity is q. The feature vector fp
computed from the point p is used to query the location information
s′ which is associated with the feature vector f ′ in the dictionary.
f ′ is the feature vector which is closest to fp in the spatial location
dictionary. The distance between feature vectors was introduced
in Section 5.2 and the covariance matrix S learned from data are



involved to find the closest feature vector in the spatial location
dictionary. Equation 9 shows how to find the feature vector f ′.

f ′ = argmin
f

√
( f − fp)∗S−1 ∗ ( f − fp) (9)

After sampled values and location information (s′) are known, they
are used to reconstruct the high-resolution data block.

6.3 High Resolution Data Reconstruction
Reconstruction uses the location information function (s′), which
maps samples’ order defined by samples’ value among a group of
samples to location indexes, to assign the samples to the spatial
domain. We first sort the samples drawn from GMM according to
the data values to get an order of samples. Then using the location
information (s′), we map each data sample to the spatial domain.
Algorithm 1 summarizes the steps to reconstruct high-resolution data
from a low-resolution grid point. Line 6 in Algorithm 1 allocates
a buffer with size B3 for high-resolution data reconstruction. Line
7 selects the prior knowledge according to the time step, quantity
and spatial coordinate of the reconstructing grid point. The details
of Line 7 are in Section 6.2. Line 8 and Line 9 generate the feature
vector for p and find location information from the prior knowledge.
Line 10 retrieves the GMM at location p. In Line 11, up is the
collection of samples which are re-sampled from gp. Line 12 sorts
data in up and returns the sorted array to u′p. The loop between Line
13 and 17 goes through the re-sampled values in order, and places
data into the high-resolution data block buffer following the location
information. Since the reconstruction of each low-resolution grid
point is independent, we have a portable parallel statistical super-
resolution implementation based on the VTK-m framework [25].
This implementation can increase the speed of super-resolution
on either GPU (CUDA) or multicore CPU (Intel TBB) backend
according to the available resource on the post-analysis machine
by changing the compiler configuration, and without changing the
code.

Algorithm 1 Statistical Super-resolution

1: . Lt,q: a statistical down-sampled data at time t with quantity q
2: . p: the low resolution coordinate of a point for reconstruction
3: . PK: collection of all prior knowledge
4: . B: pre-defined down-sampled data block size
5: procedure StatisticalSR(Lt,q, p, PK, B)
6: hp = AllocateBuffer(B3)
7: pk = PriorKnowledgeSelector(PK, t, q, p)
8: fp = FeatureVectorGenerator( Lt,q, p )
9: s′ = LocationInformationQuery(pk, fp)

10: gp = Lt,q(p)
11: up = GmmResampler(gp, B3)
12: u′p = Sorting(up)
13: for i = 1→ B3 do
14: ` = s′(i)
15: v = u′p[i]
16: SetValueToLocation(hp, v, `)
17: end for
18: return hp
19: end procedure

7 EVALUATION

To carry out the evaluation, the simulation parameter space con-
sists of three parameters of interest: hubble constant (comoving h),
the total density of baryons (comoving OmB), and the total matter
density (comoving OmM). Due to the cosmologists’ efforts in the
past decades, they have shrunk the possible value ranges of these

parameters to smaller intervals. The domain ranges of interest are
0.55 ≤ comoving h ≤ 0.85, 0.0215 ≤ comoving OmB ≤ 0.0235 and
0.12 ≤ comoving OmM ≤ 0.155. 10 samples are regularly taken
in each dimension of interest across the simulation input parameter
space which results in 1000 possible simulation inputs. Each simu-
lation run can have a different number of time steps according to the
convergence speed of each simulation input. In this experiment, we
use the first 200 time steps from each simulation run to carry out this
evaluation, because all simulation runs have at least 200 time steps.

We evaluate our technique on 7 different output quantities:
density of dark matter particles (density), X-momentum (xmom),
Y-momentum (ymom), Z-momentum (zmom), internal energy of
the gas (rho e), temperature (Temp) and gravitational potential
(phi grav). Each output data is a regular grid with a resolution
of 2563 grid points. The prior knowledge is created from only 5
simulation runs, which is sampled from the simulation parameter
input space by latin hypercube sampling. In addition, we create the
prior knowledge at every 10 time steps and set the prior knowledge
block size to 643. For the feature vector creation, the surrounding
grid points (Ω in Equation 2) of a given grid point at (i, j,k) are 7
points which includes (i, j,k), (i+ 1, j,k), (i− 1, j,k), (i, j+ 1,k),
(i, j−1,k), (i, j,k+1) and (i, j,k−1). The in situ statistical down-
sampling for all other simulations only uses 25% of grid points, in
each 163 data block, to compute a GMM with 5 Gaussian compo-
nents. Each simulation run is carried out on a node of supercomputer
with two 14-core Intel (Broadwell) Xeon E5-2680 v4 processors and
128 GB DDR3 Memory.

7.1 Quantitative Evaluation
7.1.1 Storage
Our technique outputs the prior knowledge and the statistical down-
sampled data for all output quantities, time step and simulation runs.
The ratio of the statistical down-sampled data size to the raw data
size can be computed by Equation 10.

ZSDS =
G∗3+2

B3 (10)

where G∗3 means each GMM has G Gaussian components. Each
Gaussian component is represented by a weight, a mean and a
standard deviation. 2 represents the stored minimum and maximum
values of a down-sampled data block. B is the down-sampled data
block resolution. In our experiment, we use a GMM with 5 Gaussian
components to represent a 163 data block. The storage consumption
of the statistical down-sampled data is only 0.42% of the raw data.
Our prior knowledge for all 7 quantities is generated at every tenth
times step. The total size of the prior knowledge is 25GB. If we
store raw data for 1000 simulation runs with 200 time steps and 7
quantities, it requires 85 TB storage. In contrast, our approach only
consumes 388 GB (25 GB for prior knowledge and 363 GB for all
statistical down-sampled data), which is a total of 0.44% of the raw
data.

7.1.2 Error of Reconstruction
We compare the reconstruction error with 4 other different ap-
proaches. The first is a naive down-sampling, which uses the average
value to represent a local data block and reconstructs data by inter-
polation. The second is statistical down-sampling, without the prior
knowledge. It reconstructs data by re-sampling data from a GMM,
and randomly placing samples to a data block. The third and fourth
approaches are scientific data lossy compression techniques, “IS-
ABELA” [17] and “SZ” [8].

To achieve a fair comparison on reconstruction error, we adjust
the parameters of these four approaches to generate data proxies
whose size are as close as possible to our approach. Comparing
with raw data size, our approach outputs 0.44%. For naive down-
sampling approach, each 63 data block is represented by one average



value and this consumes 0.46% of the raw size. The statistical down-
sampling without prior knowledge also down-samples a 163 data
block to a GMM and consumes 0.42% of the raw size. We adjust
the error tolerance and the number of stored coefficients to minimize
the size from ISABELA. The smallest size of compressed data we
can achieve is approximately 24% of the raw data, around 55 times
more than our approach. For SZ compression, we adjust the PSNR
error bound to 12 dB to generate a compressed data with an average
around 2.44% of the raw size.

We randomly draw 250 simulation parameter inputs to run the
simulation and compare the error of the ground truth to the recon-
structed data in each case. The RMSE of one reconstructed volume
is calculated by Equation 4, where h and r are the whole raw volume
and reconstructed volume, respectively. Max(h) and Min(h) are the
maximum and minimum values of the raw volume. Figure 6 shows
the average Root Mean Square Error (RMSE) of the reconstructed
data among 250 simulation runs. Since we create the prior knowl-
edge at every 10 times steps and use the closest prior knowledge
in the temporal domain to reconstruct data, the error curves for our
approach have periodic bumps. Our approach has the best recon-
struction RSME, except for several time steps of the Temp quantity.
By examining the data, we found the simulated universe initially
has a uniform temperature over the whole space. Therefore, the
denominator of Equation 4 is extremely small, greatly amplifying
errors due to the re-sampling process from GMM. In general, our
approach shows lower reconstruction error than all other approaches
for all 7 quantities.

We used a domain tool, Gimlet [13], to compute the power spec-
trum from the raw data and reconstructed data. The power spectrum
of the density fluctuations is a frequently used cosmological statisti-
cal measure. The error of the power spectrum computed from raw
data and reconstructed data is plotted in Figure 6(h). The error from
our technique is lower than other alternatives.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: (a) - (g) are average reconstruction RMSE of 7 quantities
over 250 simulation runs. (h) is the average error of the power
spectrum. (i) is the average in situ down-sampling time. X-axis is
the time steps. Y-axis in (a) - (h) is the RMSE in log scale.

7.1.3 Performance

The computation time of the in situ statistical down-sampling con-
sists of two parts, time for the EM algorithm to compute GMMs

and time for writing down-sampled data to disk. The average time
to write the down-sampled data for one time step to disk is 0.8
seconds among all time steps and simulation runs. In contrast, the
time to write full resolution raw data to disk is 11.2 seconds. The
statistical down-sampling runs the EM algorithm to compute GMMs
and the average time to compute GMMs for one step is 9.4 seconds.
The time to compute GMMs at different time steps is not constant.
Because the data values usually have higher variation in later time
steps in the Nyx simulation, the EM algorithm requires more time
to converge for the later time steps. Figure 6(i) shows the time of in
situ down-sampling over time steps. The average of the in situ statis-
tical down-sampling time per simulated time step is 10.19 seconds.
Therefore, our approach significantly reduces the stored data size
without spending more supercomputer time and reduces the data
movement cost to post-analysis computers.

In this experiment, we created 64 * 7 * 21 prior knowledge data
sets, because we have 64 prior knowledge blocks per volume, 7
quantities, and 21 time steps for prior knowledge creation. We sub-
divided the prior knowledge creation tasks into 140 non-overlapping
sets, where each set takes 1.37 hours on average. Note that the prior
knowledge creation is a one-time task from the 5 simulation runs.
Once the prior knowledge is generated, it can be used for recon-
structing down-sampled data of all subsequent simulation runs. The
wall time can be reduced by subdividing the tasks into more sets if
more computational resources are available. The time to reconstruct
a statistical down-sampled volume to full resolution is 1.28 seconds,
using an Intel 8-Core i-7-4770 3.40GHz CPU with 16GB memory.
Each local data block reconstruction is an independent task, and the
time can be further reduced if more computational resources are
available.

7.2 Qualitative Evaluation
We use direct volume rendering, isosurfaces, streamlines, and Gimlet
[13] to show the quality of reconstruction. Figure 7 shows rendering
images of the reconstructed data for density using one selected time
step and input parameters. Our approach shows the most similar
image compared to the raw data.

Figure 8 shows an isosurface from the reconstructed data of
phi grav quantity. Our approach most accurately preserves the shape
of the isosurface. We circle several regions where other alternatives
show incorrect shapes, such as the pieces at the left upper corner,
the connection at the bottom left corner, and the hold at the middle.

Figure 9 shows streamlines using the vector field from xmom,
ymom, and zmom quantities. We highlight and zoom-in two regions,
a vortex and a swirl. Our approach reproduces the left vortex. Naive
down-sampling also reproduces it, but the vortex shifts in space.
All methods cannot reproduce the right swirl, but our approach
approximates this feature the best.

Figure 10 shows the power spectrum at time step 200 for two
simulation runs. We observe that the power spectrum computed from
our approach is the most similar to the raw data. A low error power
spectrum is also computed from reconstructed data using ISABELA,
but ISABELA requires 55 times storage than our approach.

8 DISCUSSION

8.1 Parameter Turning
In our system, several parameters have to be selected. They are the
number of Gaussian components of each GMM, the number of prior
simulation runs, the size of a down-sampled block, and the number
of samples in each local data block for the EM algorithm. The size
of a down-sampled block is mainly determined by the affordable
size of statistical down-sampled data. The selection of the number
of samples in each local data block for the EM algorithm determines
in situ time. A very small number simulation runs with sparse in situ
calls in the temporal domain can be used to determine the number
of sub-sampling data samples to run the EM algorithm. The number



(a) Raw data (100%) (b) Naive D.S. (0.46%) (c) Statistical D.S. (0.42%) (d) ISABELA (24%) (e) SZ (2.44%) (f) Our approach (0.44%)

Figure 7: We display volume rendering of density quantity at time step 180 from a simulation run with input parameters, comoving h =
0.61666, comoving OmB = 0.02216 and comoving OmM = 0.14328. D.S. stands for down-sampling. The numbers in sub-figure captions are
the ratio of the storage consumption to the raw data size.

(a) Raw data (100%) (b) Naive D.S. (0.46%) (c) Statistical D.S. (0.42%) (d) ISABELA (24%) (e) SZ (2.44%) (f) Our approach (0.44%)

Figure 8: We display isosurface of phi grav=0 at time step 153 from a simulation run with input parameters, comoving h = 0.55, comoving OmB
= 0.02326 and comoving OmM = 0.1394. D.S. stands for down-sampling. The numbers in sub-figure captions are the ratio of the storage
consumption to the raw data size.

of prior simulation runs impacts the reconstruction quality. To study
the reconstruction quality, we compared the reconstruction results
when parameters are changed. Keeping all high-resolution data for
this study is not feasible. Therefore, data generated from fewer qual-
ities, and smaller spatial and temporal resolution are used to study
and select the parameters. We have run this study by 643 resolution,
3 quantities (“density”, “zmom” and “Temp”), 4 time steps (50,
100, 150, 200), and a down-sampled block size 83. The raw data
of all 1000 simulation runs, defined in the simulation parameter
space in Section 7, are saved for this study using 12 GB. We use
Latin hypercube sampling to sample 1, 3, 5, 7, 9 simulation runs
for prior knowledge creation. Figure 11(a) shows the normalized
RMSE. When only one simulation run is used to create the prior
knowledge, the reconstruction error is high. The error decreases
when the number of simulation runs for prior knowledge creation in-
creases. We see diminishing returns when the number of simulation
runs is more than 5. In addition, we also varied the number of Gaus-
sian components to study the impact on reconstruction quality. In
Figure 11(b), we observe similar diminishing returns if the number
of Gaussian components is greater than 4. Figure 11(c)-(f) show the
quality of reconstructed data with fewer Gaussian components and
prior simulation runs. With fewer prior simulation runs, the GMM
samples are more likely to be assigned incorrect locations. If fewer
Gaussian components are used, the GMM may not accurately sum-
marize the data, and a large error may be introduced to re-sampled
data.

8.2 Data Variation in Parameter Space of Nyx
We will discuss the variation produced from Nyx simulation. Den-
sity, at time step 200, is used as an example in this discussion. We
examine all simulation runs in Section 7 and find the maximum den-
sity value, 3.8∗1013, and the minimum value in the same simulation
run is 4.8∗108. For the smallest valued simulation, the maximum
density value is 1.2 ∗ 1011. So, Nyx can produce datasets where
the maximum value of a simulation run is 300 times larger than
that of another. In addition, the standard deviation of the maximal

values among simulation runs is 1.7∗1013. We show how data val-
ues change among different simulation runs in Figure 12(a). We
compared values along raycast segments from simulation runs as
an example. The ray is cast from the center of the x-y plane with
z=0 to the center of the x-y plane with z=255 on the density quantity
of 5 prior simulation runs in Section 7 and 20 randomly sampled
test simulation runs to collect data values on the ray and plot. It
shows that data values from different simulation runs have large
differences and the trends of data value change among simulation
runs are also different. For example, the curves circled by the purple
ellipse have a concave in the region, but the curves circled by the
red and green ellipses are peaks. On the other hand, we also observe
that multiple curves may have similar trends of data value change in
a local region, but these curves still have quite different data values.
In our approach, GMM accurately captures the data values without
keeping location information. The trends of value change from the
prior knowledge, the colored solid lines in Figure 12(a), is used
to place values into space. We show the isosurfaces from a prior
simulation run and a test simulation run, which are marked in Figure
12(a). Although they have relatively close curves in Figure 12(a),
the isosurfaces in Figure 12 (b) and (c) are significantly different.

8.3 Domain Expert Feedback
We have interviewed a cosmologist, who is one of the authors of
Nyx simulation, and summarized his comments. We discuss the
applicability of our technique in their data analysis workflow. Using
the setting in Section 7, it requires approximately 2 hours to finish
one simulation. As we have noted before, it is not feasible to retain
data from the high-resolution simulations permanently, due to the
size. Re-running the simulation every time cosmologists need a
data will require waiting hours to continue their analysis tasks. Our
technique does not significantly reduce the overall simulation time,
but it provides a high data reduction rate and reconstruction quality
to retain data. Thus, the cosmologists are able to keep simulation
runs and access data without re-running the simulation. The domain
expert also commented, “These simulations are often very expensive,



(a) Raw data (100%) (b) Naive D.S. (0.46%) (c) Statistical D.S. (0.42%) (d) ISABELA (24%) (e) SZ (2.44%) (f) Our approach (0.44%)

Figure 9: We display streamlines of the vector field from xmom, ymom and zmom quantities at time step 200 with input parameters, comoving h
= 0.58333, comoving OmB = 0.02304, and comoving OmM = 0.12776. 250 seeds are put on the line between [0,0,0] and [255,255,255] to
compute streamlines. We zoom-in to sub-domains of the data to show the details. The red and blue color on the streamlines indicate the higher
and lower vector magnitudes, respectively. D.S. stands for down-sampling. The percentage in the sub-figure captions are the ratio of the storage
consumption to the raw data size.

(a) (b)

Figure 10: (a) and (b) are power spectra computed from data at
time step 200 with input parameters, comoving h = 0.84997, comov-
ing OmB = 0.02304 and comoving OmM = 0.13552, and comov-
ing h = 0.61666, comoving OmB = 0.02216 and comoving OmM =
0.14328, respectively.

so you don’t want to run and re-run them every time you want to do
some analysis”. The cosmologist commented that the visual quality
looks good and it’s good that our method has the lowest RMSE.

9 CONCLUSION AND FUTURE WORK

This paper presents a novel in situ technique for cosmological data
analysis and visualization. The data from a few simulation runs are
selected by Latin hypercube sampling and used to create prior knowl-
edge which captures the relation between low- and high-resolution.
Data from simulation runs with other simulation parameter inputs
are down-sampled in situ to reduce the requirements of I/O band-
width and disk storage. We implement data parallel statistical down-
sampling and data sub-sampling to remain the simulation time of
new workflow at the same scale of the traditional workflow. Be-
cause our approach hugely reduces the data from the cosmological
simulation, the data from more simulation runs is affordable to save
for data analysis. We qualitatively and quantitatively demonstrate
that our technique outperforms other alternative approaches. In fu-
ture work, we will explore using error quantification and machine
learning technique. To quantify the point-wise error and convey that
to scientists are valuable because knowing the error range in the
visualization could change scientists’ decision and avoid that the
data analysis task is misled by the region with a higher error. Ma-
chine learning techniques, such as neural network based approaches,
could improve the prior knowledge to capture more precise feature
shapes and allow our technique to be used on more diverse types of
simulations.

(a) (b)

(c) (d) (e) (f)

Figure 11: We show the impact of the reconstruction quality using
different numbers of simulation runs for prior knowledge creation
and a different number of Gaussian components. Every point on
each curve is the average RMSE of quantities, “density”, “zmom”
and “Temp”. (c) is an isosurface from raw data. (d), (e) and (f) are
isosurfaces from the reconstructed data with 5 prior simulation runs
and 5 Gaussian components, 5 prior simulation runs and 1 Gaussian
component, and 1 prior simulation run and 5 Gaussian components,
respectively.
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