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Introduction

Scientific ensemble data sets have played increasingly more important roles for
uncertainty quantification in various scientific and engineering domains, such as
climate, weather, aerodynamics, and computational fluid dynamics. Ensembles
are collections of data produced by simulations or experiments conducted with
different initial conditions, parameterizations, or phenomenological models. They
are usually used to describe complex systems, study sensitivities to initial
conditions and parameters, and mitigate uncertainty. The goal of this proposal is
to develop visual analytic techniques for large scale scientific ensemble data sets.
Using ensemble simulations as an example, for a single run of such a simulation,
there can be data generated in the range of several hundred gigabytes to tens of
terabytes. A large scale ensemble dataset can consist of hundreds or thousands
of such instances, with many variables in the form of scalar, vector, or tensor,
and has a large number of samples in the high-dimensional input parameter
space.

We proposed to research and develop methods for large-scale data analytics and
visualization as applied to scientific data ensembles in several different topic
areas: 1) Exploration of Local Uncertainty with Distributions, 2) Exploration
and Tracking of Ensemble Features, and 3) Exploration of Multivariate Ensemble
Parameters. Additionally, we proposed to tackle the scalability of these methods
as applied towards DOE applications of interest: 1) Automation of In Situ
Ensemble Analytics and 2) Domain Specific and Laboratory Applications. Below,
we present selected results of our efforts in each of these aforementioned areas
for FY 2018. Additionally for a primer, we also present a reference to our recent
survey of ensemble data analytics.

Visualization and Visual Analysis of Ensemble Data: A
Survey [11]

Over the last decade, ensemble visualization has witnessed a significant de-
velopment due to the wide availability of ensemble data, and the increasing
visualization needs from a variety of disciplines. From the data analysis point
of view, it can be observed that many ensemble visualization works focus on
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Figure 1: The ontology of ensemble visualization and analysis methods presented
in our survey.

the same facet of ensemble data, use similar data aggregation or uncertainty
modeling methods. However, the lack of reflections on those essential commonal-
ities and a systematic overview of those works prevents visualization researchers
from effectively identifying new or unsolved problems and planning for further
developments.

In this paper, we take a holistic perspective and provide a survey of ensemble
visualization. Specifically, we study ensemble visualization works in the recent
decade, and categorize them from two perspectives: (1) their proposed visualiza-
tion techniques; and (2) their involved analytic tasks. For the first perspective,
we focus on elaborating how conventional visualization techniques (e.g., surface,
volume visualization techniques) have been adapted to ensemble data; for the
second perspective, we emphasize how analytic tasks (e.g., comparison, clus-
tering) have been performed differently for ensemble data. From the study of
ensemble visualization literature, we have also identified several research trends,
as well as some future research opportunities.

Figure 1 shows the structure and breakdown of the different methods in our
survey. We start with the fundamental concepts of ensemble data by answering
questions like: what is ensemble data; how ensemble data is different from
traditional scientific data; and what makes the visualization of ensemble data
difficult. An intuitive data representation is formalized, which identifies the five
orthogonal dimensions of ensemble data (i.e., variable, location, time, member,
and ensemble). The representation is application independent, and thus, can
be used to relate ensemble data from different disciplines. We additionally
categorize the methods based on visualization tasks or analysis tasks.
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Exploration of Local Uncertainty with Distribu-
tions

Uncertainty Visualization Using Copula-Based Analysis in
Mixed Distribution Models [7]

Figure 2: An example of using copula based modeling vs. Gaussian only or
KDE-only methods

Distributions are often used to model uncertainty in many scientific datasets.
To preserve the correlation among the spatially sampled grid locations in the
dataset, various standard multivariate distribution models have been proposed
in visualization literature. These models treat each grid location as a univariate
random variable which models the uncertainty at that location. Standard
multivariate distributions (both parametric and nonparametric) assume that all
the univariate marginals are of the same type/family of distribution. But in
reality, different grid locations show different statistical behavior which may not
be modeled best by the same type of distribution. In this paper, we propose a new
multivariate uncertainty modeling strategy to address the needs of uncertainty
modeling in scientific datasets.

Our proposed method is based on a statistically sound multivariate technique
called Copula, which makes it possible to separate the process of estimating
the univariate marginals and the process of modeling dependency, unlike the
standard multivariate distributions. The modeling flexibility offered by our
proposed method makes it possible to design distribution fields which can
have different types of distribution (Gaussian, Histogram, KDE etc.) at the
grid locations, while maintaining the correlation structure at the same time.
Depending on the results of various standard statistical tests, we can choose an
optimal distribution representation at each location, resulting in a more cost
efficient modeling without significantly sacrificing on the analysis quality. To
demonstrate the efficacy of our proposed modeling strategy, we extract and
visualize uncertain features like isocontours and vortices in various real world
datasets. We also study various modeling criterion to help users in the task of
univariate model selection.

In Figure 2, we show an example of modeling an ensemble of vortex core
simulations using our Copula method, compared with single model-type strategies.
The marked regions in the images highlight the differences in modeling of the
probabilities of vortex cores appearing, where (a) is the Coupla method, (b)

3



is a Gaussian-only method, and (c) is a Kernel Density Estimate (KDE) only
method. The result generated by our proposed method as shown by (a) is a
mixed representation of both the types of distributions. Therefore, the regions
with high certainty of following a Gaussian distribution are able to show the
probable vortex structures that (b) reflects. Whereas, regions where we used
KDE to model the data where able to show results similar to (c). For example,
the region marked by the right-most black circle highlights a feature which was
missed out by assuming Gaussian distribution, but was captured by both KDE
and our mixed representation.

Exploration and Tracking of Ensemble Features

eFESTA: Ensemble Feature Exploration with Surface [4]

Figure 3: An example of surface density estimates.

Ensemble simulations are becoming prevalent in various scientific and engineering
domains, such as climate, weather, aerodynamics, and computational fluid dy-
namics. An ensemble is a collection of data produced by simulations for the same
physical phenomenon conducted with different initial conditions, parameteriza-
tions, or phenomenological models. Ensemble simulations are used to simulate
complex systems, study sensitivities to initial conditions and parameters, and
mitigate uncertainty. For example, in numerical weather prediction, ensemble
forecasts with different fore- cast models and initial conditions are widely used
to indicate the range of possible future states of the atmosphere.

We propose surface density estimate (SDE) to model the spatial distribution of
surface features—isosurfaces, ridge surfaces, and streamsurfaces—in 3D ensemble
simulation data. The inputs of SDE computation are surface features represented
as polygon meshes, and no field datasets are required (e.g., scalar fields or vector
fields). The SDE is defined as the kernel density estimate of the infinite set of
points on the input surfaces and is approximated by accumulating the surface
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densities of triangular patches. We also propose an algorithm to guide the
selection of a proper kernel bandwidth for SDE computation. An ensemble
Feature Exploration method based on Surface densiTy EstimAtes (eFESTA)
is then proposed to extract and visualize the major trends of ensemble surface
features. For an ensemble of surface features, each surface is first transformed into
a density field based on its contribution to the SDE, and the resulting density
fields are organized into a hierarchical representation based on the pairwise
distances between them. The hierarchical representation is then used to guide
visual exploration of the density fields as well as the underlying surface features.
We demonstrate the application of our method using isosurface in ensemble
scalar fields, Lagrangian coherent structures in uncertain unsteady flows, and
streamsurfaces in ensemble fluid flows.

As shown in Figure 3, the input surfaces and the output density field are visualized
in (a) and (b), respectively. Given an ensemble of surfaces, a straightforward
density estimation approach is to define a regular grid over the surfaces, and
then count the number of surfaces intersecting each grid cell. However, after
discretizing the surfaces with respect to a given grid, the information of the
surface patches (e.g., location, orientation, and shape) within each grid cell is
lost, which introduces discretization error into the density estimation results.
Although increasing the grid resolution can reduce the discretization error, the
computation cost increases. In this work, we propose SDE, which generalizes
the kernel density estimate (KDE) from discrete sample points to the infinite
set of points on input surfaces. We approximate SDE of the input surfaces by
accumulating the surface densities of triangular patches, which can be calculated
based on bivariate normal integrals with efficient GPU computation.

Exploration of Multivariate Ensemble Parame-
ters

Extreme-Scale Stochastic Particle Tracing for Uncertain
Unsteady Flow Visualization and Analysis [2]

Figure 4: An example of stochastic flow maps (SFM).

Visualizing and analyzing data with uncertainty are important in many science
and engineering domains, such as computational fluid dynamics, climate, weather,
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and materials sciences. Instead of analyzing deterministic data resulted from
statistical aggregation, scientists can gain more understanding by investigating
uncertain data that are derived and quantified from experiments, interpolation,
or numerical ensemble simulations. For example, typical analyses of uncertain
flows involve finding possible pollution diffusion paths in environmental sciences
with uncertain source-destination queries and locating uncertain flow boundaries
in computational fluid dynamics models with uncertain Lagrangian analysis.

We present an efficient and scalable solution to estimate uncertain transport
behaviors—stochastic flow maps (SFMs)—for visualizing and analyzing uncertain
unsteady flows. Computing flow maps from uncertain flow fields is extremely
expensive because it requires many Monte Carlo runs to trace densely seeded
particles in the flow. We reduce the computational cost by decoupling the time
dependencies in SFMs so that we can process shorter sub time intervals inde-
pendently and then compose them together for longer time periods. Adaptive
refinement is also used to reduce the number of runs for each location. We par-
allelize over tasks—packets of particles in our design—to achieve high efficiency
in MPI/thread hybrid programming. Such a task model also enables CPU/GPU
coprocessing. We show the scalability on two supercomputers, Mira (up to 256K
Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs), that
can trace billions of particles in seconds.

As shown in Figure 4, the key to achieve parallelism is to decouple sub time inter-
vals to remove time dependencies. The SFM can be estimated by composing the
intermediate results from each subinterval. We also derived the theoretical error
bound of decoupled SFM estimate, which is related to the number of subintervals,
the mesh discretization, and the smoothness of the SFM distribution.

Automation of In Situ Ensemble Analytics

Parallel Partial Reduction for Large-Scale Data Analysis
and Visualization [3]

We present a novel partial reduction algorithm to aggregate sparsely distributed
intermediate results that are generated by data-parallel analysis and visualization
algorithms. Applications of partial reduction include flow trajectory analysis, big
data online analytical processing, and volume rendering. Unlike traditional full
parallel reduction that exchanges dense data across all processes, the purpose of
partial reduction is to exchange only intermediate results that correspond to the
same query, such as line segments of the same flow trajectory.

To this end, we design a three-stage algorithm that minimizes the communica-
tion cost: (1) partitioning the result space into groups; (2) constructing and
optimizing the reduction partners for each group; and (3) initiating collective
reduction operations for all groups concurrently. Both theoretical and empirical
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Figure 5: An example workflow of Lagrangian-based flow analyses with parallel
partial reduction

analyses show that our algorithm outperforms the traditional methods when
the intermediate results are sparsely distributed. We also demonstrate the
effectiveness of our algorithm for flow visualization, big log data analysis, and
volume rendering.

Figure 5 shows an application of Lagrangian-based flow visualization applications
that can benefit from our partial reduction methods. For example, the total
length of flow lines can be calculated by summing the lengths of flow line
segments; the operator for the reduction is “add.” Importantly for ensemble
statistical-based analyses, streamline statistics (histograms, mean, and variance)
are also based on the add operator. The line integral convolutions (LIC) result
of a given streamline seed can be computed by summing the convolution values
across processes. The reduction of flow line queries, such as predicates and
pattern matching, is based on the logical “or” operator.
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Figure 6: A reconstruction of Nyx simulation data using statistical super resolu-
tion compared to the original data.
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Domain Specific and Laboratory Applications

Cosmology

Cosmological models have been developed to simulate the large-scale evolution
of the structure of the universe. Though, these are parameterized by initial
conditions, consisting of many initial physical parameters, and the exact values of
the initial conditions are not known. Physicists, such as scientists at LBL with the
Nyx simulation, are searching for these initial conditions of our universe. To do
this, they study ensembles of the simulated distributions of matter as compared
to today’s observed universe. However, the number of physical parameters of
interest create a huge data space to search and analyze from high-resolution
cosmological simulations. Assessing such massive datasets in post-analysis will
be slow and hinder the time to results due to the limited I/O bandwidth and
storage capacity. Developing techniques to reduce the data size in situ, meet the
I/O bandwidth and disk storage constraints, and provide the desired scientific
accuracy is critical for cosmology.

In response, we evaluated two promising techniques from previous research
applied towards DOE applications: “Incremental GMM-based (Gaussian Mixture
model) Emulator” and “Statistical-based Super-resolution,” to achieve our goal.
The GMM-based Emulator uses multi-variate GMMs to compactly summarize
the data from initial simulation parameters and quantities of interest. The data
set from a given initial condition can then be reconstructed from the emulator in
the post-analysis stage. The GMM-based emulator, itself, is built incrementally,
over time, when the data from a new simulation is generated in the parameter
space. This allows for both smaller storage footprint and faster simulation and
analysis time due to reduced data.

Secondly, Statistical-based Super-resolution statistically down-samples cosmo-
logical data, in situ, and later reconstructs the smaller, down-sampled data for
analysis, to full resolution. An example of the original data compared to our
reconstruction is shown in Figure 6. The process involves a one-time task that
collects a small subset of full-resolution data generated from the ensemble. This
creates a prior knowledge data set for super-resolution reconstruction. Then
during later simulations, statistical-based down-sampling is applied, reduces the
size of data saved. Combined with the down-sampled data, the prior knowledge
data set is used to compensate for the lack of spatial information and details to
recover it to full-resolution and high accuracy. This work has been submitted
for peer-review to Pacific Visualization 2019.
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